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1. Some definitions about categories and functors

1.1. Categories.

Definition 1.1. A category C consists of the data of
(i) a set Ob(C) (the set of objects),
(ii) for any X, Y ∈ Ob(C), a set HomC(X, Y ) (the set of mor-

phisms),
(iii) for any X, Y, Z ∈ Ob(C), a map (the composition)

HomC(X, Y )× HomC(Y, Z) −→ HomC(X,Z), (f, g) 7→ g ◦ f,
satisfying

(i) ◦ is associative, that is, (h ◦ g) ◦ f = h ◦ (g ◦ f) as soon as both
sides make sense,

(ii) for each X ∈ Ob(C), there exists idX ∈ HomC(X,X) which is
neutral for ◦ on the right and on the left, that is, idX ◦ f = f ,
g ◦ idX = g, as soon as the left hand sides make sense.

We often write Hom(X, Y ) instead of HomC(X, Y ) andX ∈ C instead
of X ∈ Ob(C). We also write f : X −→ Y instead of f ∈ Hom(X, Y ).

A morphism f : X −→ Y is an isomorphism if there exists g : Y −→ X
(the inverse of f) such that f ◦ g = idY and g ◦ f = idX . If such a g
exists, it is unique.

To avoid logical contradiction we cannot consider the set of all sets.
So, when we consider the category Set of sets (or the category of
groups, rings,. . . ) we assume that we have chosen a set U , called
a universe which is stable by the operations of set’s theory (union,
intersection, product,. . . ) and we only consider the categories whose
objects and morphisms sets belong to U . For any given set X, there
exists a universe containing X. For more details see [3, §I.6].

Examples of categories abound (the category of sets, topological
spaces, manifolds, rings,. . . ) but we will soon restrict to categories
which are similar in some sense to the category of modules over a ring,
so called abelian categories.
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1.2. Functors.
Definition 1.2. Let C, C ′ be two categories. A functor F from C to
C ′ is the data of maps (also denoted by F ) F : Ob(C) −→ Ob(C ′) and
F : HomC(X, Y ) −→ HomC′(F (X), F (Y )), for all X, Y ∈ Ob(C), satisfy-
ing

(i) F (idX) = idF (X) for all X ∈ Ob(C),
(ii) F (f ◦ g) = F (f) ◦ F (g), for all composable morphisms f, g.

For two functors F : C −→ C ′ and G : C ′ −→ C ′′ we define the composi-
tion G◦F by (G◦F )(X) = G(F (X)) for X ∈ Ob(C) and (G◦F )(f) =
G(F (f)) for all morphisms f in C.

For a category C we define the opposite category Cop by Ob(Cop) =
Ob(C) and HomCop(X, Y ) := HomC(Y,X) for all X, Y ∈ Ob(C).

A contravariant functor from C to C ′ is a functor from Cop to C ′.
(Functors can be called covariant functors if we want to insist.)
Example 1.3. For a category C and X ∈ C we define a functor
h(X) : Cop −→ Set, Y 7→ HomC(Y,X).
Definition 1.4. Let C, C ′ be two categories and let F,G be two functors
from C to C ′. A morphism of functors θ from F to G is the data of
morphisms θX : F (X) −→ G(X) for all X ∈ Ob(C) such that, for all
morphisms f : X −→ Y in C, the following diagram commutes

F (X) θX //

F (f)
��

G(X)
G(f)
��

F (Y )
θY

// G(Y ).

In this way the set Fct(C, C ′) of functors from C to C ′ becomes a cate-
gory.
Example 1.5. We set C∧ = Fct(Cop,Set). The above functors h(X),
X ∈ C, define a functor h : C −→ C∧, called the Yoneda functor.
Definition 1.6. Let F : C −→ C ′ be a functor. We say that F is
full (resp. faithful, fully faithful) if the maps F : HomC(X, Y ) −→
HomC′(F (X), F (Y )) are surjective (resp. injective, bijective), for all
X, Y ∈ Ob(C).

We say that F is essentially surjective if for each Y ∈ Ob(C ′) there
exist X ∈ Ob(C) and an isomorphism F (X) ≃ Y .

We say that F is an equivalence of categories if there exist a functor
G : C ′ −→ C and isomorphisms of functors idC ≃ G◦F and idC′ ≃ F ◦G.
We then write F : C ∼−→ C ′ and we say that F and G are quasi-inverse
to each other.
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For example the category of finite dimensional vector spaces over
some field k, say Vectf (k), is equivalent to its full subcategory Mat(k)
with Ob(Mat(k)) = {kn; n ∈ N} (where full means that the Hom sets
are the same: HomMat(k)(kn,km) = HomVectf (k)(kn,km) = Mat(m ×
n,k)).

Exercise 1.7. A functor F : C −→ C ′ is an equivalence of categories if
and only if it is fully faithful and essentially surjective.

Exercise 1.8. For any category C the Yoneda functor
h : C −→ C∧ = Fct(Cop,Set)

is fully faithful.
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2. Example of derived functors: extension

Let R be a ring and let Mod(R) be the category of left R-modules
and R-linear maps. In the case R = Z we remark that Mod(Z) = Ab,
the category of abelian groups and additive morphisms.

2.1. Exact sequences, exact functors. A composable pair of mor-
phisms A f−→ B

g−→ C in Mod(R) is “exact at B” if ker g = im f . A
long exact sequence is a sequence · · · −→ An dn

−→ An+1 −→ · · · , n ∈ Z,
which is exact at each An, n ∈ Z. A short exact sequence is a sequence
0 −→ A

f−→ B
g−→ C −→ 0 which is exact at A, B and C, that is, f is

injective and C ≃ B/A.
A functor F : Mod(R) −→ Ab is additive if the maps Hom(A,B) −→

Hom(F (A), F (B)), f 7→ F (f), are group morphisms, for all A,B ∈
Mod(R).

An additive functor F : Mod(R) −→ Ab is exact if it sends short
exact sequences to short exact sequences. It is left exact if, for any
exact sequence 0 −→ A

f−→ B
g−→ C, the sequence 0 −→ F (A) F (f)−−→

F (B) F (g)−−→ F (C) is exact. It is right exact if, for any exact sequence
A

f−→ B
g−→ C −→ 0, the sequence F (A) F (f)−−→ F (B) F (g)−−→ F (C) −→ 0 is

exact.

Example 2.1. For any M ∈ Mod(R), both functors

Hom(M,−) : Mod(R) −→ Ab, X 7→ Hom(M,X)
Hom(−,M) : Mod(R)op −→ Ab, X 7→ Hom(X,M)

are left exact.

2.2. Projectives, injectives, derived functors. The starting point
of homological algebra is that it makes sense, for a given left (or right)
exact functor, to “measure” its deviation from being exact. For ex-
ample there exists a first derived functor of the functor Hom(−,M),
denoted Ext1(−,M) such that, for any exact sequence 0 −→ A

u−→
B

v−→ C −→ 0, there exists an exact sequence 0 −→ Hom(C,M) −→
Hom(B,M) −→ Hom(A,M) −→ Ext1(C,M). The fact that Hom(−,M)
is not right exact means that Ext1(−,M) is not the zero functor.

Definition 2.2. An R-module P is projective if, for any given surjec-
tive morphism v : B −→ C in Mod(R) and any u : P −→ C, there exists
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u′ : P −→ B such that u = v ◦ u′:

B C 0

P

v

u
u′

We can rephrase the definition by saying that P is projective if, for
any short exact sequence B −→ C −→ 0, the sequence Hom(P,B) −→
Hom(P,C) −→ 0 is exact (it then follows that the functor Hom(P, ·)
is exact). Projective modules have a good behaviour with respect to
Hom(−,M):

Lemma 2.3. Let 0 −→ A
u−→ B

v−→ P −→ 0 be an exact sequence in
Mod(R). We assume that P is projective. Then the sequence 0 −→
Hom(P,M) −→ Hom(B,M) −→ Hom(A,M) −→ 0 is exact.

The idea is to replace an arbitrary R-module by a sequence of pro-
jectives.

Definition 2.4. Let A ∈ Mod(R). A left resolution of A is a long
exact sequence

· · · −→ P i di

−→ P i+1 −→ · · · −→ P−1 d−1
−−→ P 0 ε−→ A −→ 0.

More precisely, the resolution is (P ·, d·) and ε is the augmentation mor-
phism. It is called a projective resolution if all the P i’s are projective
modules.

Proposition 2.5. Let A ∈ Mod(R). Let (P ·, d·) be a projective left
resolution of A and let

0 −→ Hom(P 0,M) e0
−→ Hom(P 1,M) −→ · · ·

−→ Hom(P i−1,M) ei−1
−−→ Hom(P i,M) −→ · · ·

be the sequence obtained by applying Hom(−,M) to this resolution,
where ei = Hom(d−i−1,M). Then Exti(A,M) := ker(ei)/ im(ei−1) is
independent of the choice of {P ·, d·}.

Then A 7→ Exti(A,M) is a functor, called the ith derived functor of
Hom(−,M) (also called ith extension group in this case). We can check
that Ext0(A,M) = Hom(A,M).
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Proposition 2.6. Let 0 −→ A
u−→ B

v−→ C −→ 0 be an exact sequence in
Mod(R). Then there exists a long exact sequence

0 −→ Hom(C,M) −→ Hom(B,M) −→ Hom(A,M) −→ Ext1(C,M)
−→ · · · −→ Exti(C,M) −→ Exti(B,M) −→ Exti(A,M)

δi

−→ Exti+1(C,M) −→ Exti+1(B,M) −→ · · ·

Reversing the arrows we will also define the notion of injective objects
and use them to define the derived functors of Hom(M,−) (it turns out
that they are the same: Exti(M,A) but this is not a priori obvious).

We will give a proof in a more general framework, that of abelian
categories. Our main example will be the category of sheaves on a
topological space X. Then the derived functors of the “global section”
functor will recover the cohomology groups of X, which are the first
invariants associated with a manifold.
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3. Sheaves

Definition 3.1. Let X be a topological space. A presheaf P of abelian
groups on X is the data of

(i) an abelian group P (U), for each open subset U ⊂ X, the group
of sections over U ,

(ii) a morphism of groups rU
V : P (U) −→ P (V ), for each inclusion of

open subsets V ⊂ U ⊂ X, the restriction map, also denoted
s 7→ s|V ,

satisfying
(i) rU

U = idP (U), for each open subset U ⊂ X,
(ii) rV

W ◦ rU
V = rU

W , for each inclusion of three open subsets W ⊂
V ⊂ U ⊂ X.

A morphism of presheaves f : P −→ P ′ is the data of groups mor-
phisms f(U) : P (U) −→ P ′(U) which commute with the restriction
maps, that is, r′

V,U ◦ f(U) = f(V ) ◦ rU
V , for all V ⊂ U ⊂ X.

Remark 3.2. Let Op(X) be the category with objects the open subsets
of X and morphisms the inclusions, that is, HomOp(X)(U, V ) is a set
with one object if U ⊂ V and is empty if U ̸⊂ V . There is only
one possibility for the composition law. Then a presheaf on X is a
contravariant functor from Op(X) to Ab.

More generally, for a ringR we can define presheaves ofR-modules by
replacing abelian groups by R-modules in the definition. A presheaves
of R-modules on X is a contravariant functor from Op(X) to Mod(R).
Examples 3.3. 1) Let M be an abelian group. The constant presheaf
of group M on X is the presheaf PMX defined by PMX(U) = M for
all open subsets U ⊂ X and rU

V = idM for V ⊂ U .
2) We let C0

X(U) be the space of continuous functions (with values in
C) on an open subset U ⊂ X. Then U 7→ C0

X(U) and the obvious
restriction maps define a presheaf C0

M . When X is a C∞-manifold we
define in the same way the presheaf of C∞-functions, denoted C∞

X .
3) Let X be a topological space endowed with a measure µ. We let L1

X

be the presheaf of integrable functions defined by L1
X(U) = {f : U −→ C;

f is measurable and
∫

U |f |dµ <∞}.
Definition 3.4. Let X be a topological space. A sheaf F of abelian
groups on X is a presheaf satisfying

(i) separation: for any open subset U ⊂ X, any open covering
U = ⋃

i∈I Ui and any section s ∈ F (U), if s|Ui
= 0 for all i ∈ I,

then s = 0,
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(ii) gluing: for any open subset U ⊂ X, any open covering U =⋃
i∈I Ui and any collection of sections si ∈ F (Ui), which are

compatible in the sense that si|Ui∩Uj
= sj|Ui∩Uj

for all i, j ∈ I,
there exists a section s ∈ F (U) such that s|Ui

= si for all i ∈ I.

A morphism of sheaves f : F −→ F ′ is a morphism of the underlying
presheaves. We denote by Psh(X) (resp. Sh(X)) the category of
presheaves (resp. sheaves) on X.

Remark 3.5. In Definition 3.1 it is allowed to take the empty family I
as the set of indices for a covering. It turns out that it makes sense to
ask what is the union of an arbitrary family ⋃i∈I Xi (below we recall the
definition of a coproduct of two objects; we can extend to an arbitrary
family) even when I = ∅: the result is ⋃i∈∅ Xi = ∅. (What is the
product of an empty family of sets, ∏i∈∅ Xi =?)

Now we can apply the separation axiom with the covering ∅ = ⋃
i∈∅ Ui

of the empty set. Take s ∈ F (∅). The condition “s|Ui
= 0 for all i ∈ I”

is automatically satisfied since there is nothing to check. So we obtain
s = 0.

In conclusion, for any sheaf F we have F (∅) = 0.

Examples 3.6. The presheaves C0
X and C∞

X are sheaves. The presheaves
PAX and L1

X are not.

Given a presheaf P there exists a “closest possible” sheaf correspond-
ing to P , called the associated sheaf of P and denoted by P a. We will
see a more precise definition when we introduce adjoint functors. For
the moment we give an ad hoc definition of P a.

Definition 3.7. Let X be a topological space and let P ∈ Psh(X).
For a given point x ∈ X we set Px = lim−→x∈U

P (U), where U runs over
the open neighborhoods of x. In other words Px = (⊔x∈U P (U))/ ∼
where ∼ is the equivalence relation defined for s ∈ P (U), t ∈ P (V ) by
s ∼ t if there exists a third neighborhood of x, W ⊂ U ∩ V , such that
s|W = t|W .

The group Px is called the stalk of P at x. For s ∈ P (U) its image
in Px is denoted sx and called the germ of s at x.

For a morphism u : P −→ Q in Psh(X) we denote by ux : Px −→ Qx

the induced morphism on the stalks.

Lemma 3.8. Let F be a sheaf on X and s ∈ F (U) for some open
subset U . Then s = 0 if and only if sx = 0 for all x ∈ U .

Proposition 3.9. Let u : F −→ G be a morphism in Sh(X). Then u is
an isomorphism if and only if ux is an isomorphism for all x ∈ X.
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Proof. See for example [1] Prop. 2.2.2. □

Proposition 3.10. Let X be a topological space and let P ∈ Psh(X).
There exist a sheaf P a and a morphism of presheaves u : P −→ P a such
that ux is an isomorphism, for each x ∈ X. Moreover the pair (P a, u)
is unique up to isomorphism.

Proof. See for example [1] Prop. 2.2.3. We only give a definition of P a.
For an open set U ⊂ X we set P a(U) = {s = (s(x))x∈U ∈

∏
x∈U Px;

for all x ∈ U there exists a neighborhood V of x in U and t ∈ P (V )
such that s(y) = ty for all y ∈ V }. □

Examples 3.11. 1) Let A be an abelian group. The constant sheaf
of group A on X is the sheaf associated with PAX , denoted AX =
(PAX)a. We have AX(U) = {f : U −→ A; f is locally constant}, where
a function f is said locally constant if for any x ∈ U there exists a
neighborhood V of x in U such that f |V is a constant function. If X
is locally connected, we have AX(U) ≃ Aπ0(U), where π0(U) is the set
of connected components.

2) Let X be a topological space endowed with a measure µ. Then
(L1

X)a = L1,loc
X where L1,loc

X (U) = {f : U −→ C; f is measurable and
locally integrable}.
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4. Some properties of categories

We want to define products, kernels,. . . in an arbitrary category. The
general procedure is to use the Yoneda embedding h : C −→ C∧ =
Fct(Cop,Set) (or a variation C −→ Fct(Cop,Ab) for an additive cate-
gory). Then we consider the corresponding operation on Fct(Cop,Set),
induced from Set, and we ask whether the result belongs to the image
of the Yoneda embedding. We recall that h is fully faithful and we
have the remark:

Exercise 4.1. A fully faithful functor F : C −→ C ′ is conservative: for
u : X −→ Y dans C, if F (u) is an isomorphism, then u is an isomorphism.

In particular h(Z) ≃ h(Z ′) implies Z ≃ Z ′. Hence if F ∈ C∧ is of
the form F ≃ h(Z), then Z is well-defined up to isomorphism. We say
F is representable by Z.

For example, we want to define the product Z of X, Y ∈ C. We have
h(X), h(Y ) in C∧. In C∧ we define the product by (F×G)(X):=F (X)×
G(X) (check that this defines an object of C∧). Then we say that X, Y
have a product if there exists Z ∈ C such that h(Z) = h(X) × h(Y ).
If this is the case, then Z is well-defined up to a unique isomorphism.
Here is an equivalent definition:

Definition 4.2. Let C be a category and X, Y ∈ Ob(C). A product of
X and Y is an object Z together with morphisms p : Z −→ X, q : Z −→ Y
such that, for any other Z ′ and p′ : Z ′ −→ X, q′ : Z ′ −→ Y there exists a
unique f : Z ′ −→ Z such that p′ = p ◦ f and q′ = q ◦ f :

Z
p

}}

q

  
X Y

Z ′.
p′

aa

q′

>>f

OO

If it exists, the product is unique up to a unique isomorphism. It is
denoted X × Y .

We can rephrase the definition of the product by

Hom(Z ′, X × Y ) = Hom(Z ′, X)× Hom(Z ′, Y ), for all Z ′ ∈ Ob(C),

where the second × is the product in the category of sets.
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A coproduct is defined by reversing the arrows. It is often denoted
X ⊔ Y

X ⊔ Y

f

��

X

p′
##

p
;;

Y

q′
{{

q
cc

Z ′

We have Hom(X ⊔ Y, Z ′) = Hom(X,Z ′)× Hom(Y, Z ′).

An object X in a category C is called initial if Hom(X, Y ) consists
of a single element for all Y ∈ Ob(C). It is called final if Hom(Y,X)
consists of a single element for all Y ∈ Ob(C). It is called a zero object
if it is both final and initial. Final, initial or zero objects are unique
up to a unique isomorphism, if they exist.

A zero object is usually denoted by 0. If it exists, we also denote
by 0 ∈ Hom(X, Y ), for any objects X, Y , the morphism given by the
composition X −→ 0 −→ Y . We remark that 0 ◦ f = f ◦ 0 = 0 for any f .

Remark 4.3. Let C be a category, X, Y ∈ C. Let h : C −→ Fct(Cop,Set)
be the Yoneda functor of C, and h′ : Cop −→ Fct(C,Set) the Yoneda
functor of Cop. We could define “opposite” notions, ×̂ and ⊔̂ by:
(i) X⊔̂Y (if it exists) is characterized by h(X⊔̂Y ) = h(X) ⊔ h(Y ),
(ii) X×̂Y (if it exists) is characterized by h′(X×̂Y ) = h′(X) ⊔ h′(Y ).

However, if C has a initial (respectively final) object, ⊔̂ (respectively
×̂) does not exist.

Definition 4.4. A category C is additive if it satisfies the conditions:
(1) for any X, Y ∈ C, HomC(X, Y ) is an abelian group,
(2) the composition law is bilinear,
(3) there exists a zero object in C,
(4) C admits products and coproducts.

Note that Hom(X, Y ) ̸= ∅ since it is a group and for all X ∈ C,
Hom(X, 0) = Hom(0, X) = 0.

In an additive category the coproduct is called the sum and denoted
⊕ instead of ⊔.

Exercise 4.5. Since Hom(X,X × Y ) = Hom(X,X) × Hom(X, Y ),
(idX , 0) gives a morphism iX : X −→ X ×Y . In the same way we define
iY : Y −→ X × Y .

We also have Hom(X⊕Y, Z) = Hom(X,Z)×Hom(X,Z) and (iX , iY )
defines u : X ⊕ Y −→ X × Y . Prove that u is an isomorphism.
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Definition 4.6. Let C be an additive category and let f : X −→ Y be
a morphism in C. A kernel of f is a morphism if : K −→ X such that
f ◦ if = 0 and such that, for any morphism i′ : K ′ −→ X satisfying
f ◦ i′ = 0 there exists a unique j : K ′ −→ K such that i′ = if ◦ j. If
the kernel exists, it is unique up to a unique isomorphism and we set
ker f = K.

A cokernel of f is a kernel in the opposite category. It is denoted
coker f .

This is visualized by the diagrams:
K ′

j
��

i′

%%

0

**ker f
if

// X
f

// Y

C ′

X
f

//

0

44

Y pf

//

p′

88

coker f

q

OO

We can also rephrase the definitions by, for all Z ∈ Ob(C):
Hom(Z, ker(f)) ≃ ker(φf : Hom(Z,X) −→ Hom(Z, Y )),

Hom(coker(f), Z) ≃ ker(ψf : Hom(Y, Z) −→ Hom(X,Z)),
with φf (u) = f ◦ u, ψf (u) = u ◦ f .

Definition 4.7. A morphism f : X −→ Y in a category C is called a
monomorphism if, for all W ∈ Ob(C) and all morphisms g, h : W −→ X
in C, the equality f ◦ g = f ◦ h implies g = h (in other words, the map
HomC(W,X) −→ HomC(W,Y ), g 7→ f ◦ g, is injective).

Similarly f is called an epimorphism if, for all g, h : Y −→ W , g ◦ f =
h ◦ f implies g = h (or, equivalently, HomC(Y,W ) −→ HomC(X,W ) is
surjective).

Exercise 4.8. If C is an additive category, prove that f is an monomor-
phism if and only if the kernel of f exists and is 0. Prove that f is an
epimorphism if and only if coker f ≃ 0.

Exercise 4.9. Let C be an additive category and let f : X −→ Y be a
morphism in C. We assume that ker f exists. Prove that the morphism
if : ker f −→ X is a monomorphism.

Dually, if f has a cokernel, pf : Y −→ coker f is an epimorphism.



HOMOLOGICAL ALGEBRA AND SHEAF THEORY 13

5. Abelian categories

Lemma 5.1. Let C be an additive category and let f : X −→ Y be a
morphism which admits a kernel ker f if−→ X and a cokernel Y pf−→
coker f . We also assume that if has a cokernel (it is called the coimage

of f , say X
p′

f−→ coim f) and that pf has a kernel (it is called the

image of f , say im f
i′
f−→ Y ). Then there exists a unique morphism

a : coim f −→ im f such that f = i′f ◦ a ◦ p′
f .

ker f
if &&

coker f

X
f //

p′
f

''

Y
pf

77

coim f a
// im f

i′
f

99

Proof. The existence of a follows from the universal properties of ker
and coker. If we have another a′ making the diagram commute, then
a◦p′

f = a′◦p′
f because i′f is a monomorphism. And then a = a′ because

p′
f is an epimorphism. □

Definition 5.2. An abelian category C is an additive category such
that, for any morphism f : X −→ Y , the kernel and the cokernel of f
exist (hence also the image and the coimage) and the natural morphism
coim f −→ im f of Lemma 5.1 is an isomorphism.

The typical example is the category Ab of abelian groups.
In an abelian category we will identify coim f and im f : the diagram

of the Lemma 5.1 becomes

(5.1)

ker f
if &&

coker f

X
f //

p′
f
&&

Y
pf

77

im f
i′
f

99

and, by the result of Exercise 4.9, we have short exact sequences:

(5.2)
0 −→ ker f if−→ X

p′
f−→ im f −→ 0,

0 −→ im f
i′
f−→ Y

pf−→ coker f −→ 0.

Example 5.3. Let k be a field and Vectfil be the category of filtered
vector spaces over k. The objects, denoted (V, F ·), are vector spaces V
together with sequences of subspaces · · ·F iV ⊂ F i+1V ⊂ F i+2V · · · ⊂
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V where i ∈ Z such that V = ⋃
i∈N Vi. The morphisms from (V, F ·) to

(W,F ·) are linear maps u : V −→ W such that u(F iV ) ⊂ F iW .
The category Vectfil is an additive category with kernels and cok-

ernels. For u : (V, F ·) −→ (W,F ·), we can check that keru is the usual
keru with the filtration F i(keru) = ker(u|F iV ) and cokeru is the usual
cokeru with the filtration F i(cokeru) = F iW/(F iW ∩ im u).

We set V = k with two filtrations F i
1V = 0 for i ≤ 0, F i

1V = k for
i > 0 and F i

2V = F i+1
1 V . The identity map on V induces a morphism

u : (V, F ·
1) −→ (V, F ·

2). Then coim(u) = (V, F ·
1) ̸≃ im(u) = (V, F ·

2).

Lemma 5.4. Let f : X −→ Y be a morphism in an abelian category.
Then f is an isomorphism if and only if ker f ≃ 0 and coker f ≃ 0.

Notation 5.5. Let f : X −→ Y be a morphism in an abelian category
such that ker f ≃ 0. We often write Y/X := coker f .

Let X f−→ Y
g−→ Z be a sequence of morphisms in an abelian category.

We assume that g ◦ f = 0. Then there exists a natural morphism
a : im f −→ ker g. We have ker a ≃ 0. We say that the sequence is exact
(at Y ) if this morphism is an isomorphism, that is, coker a ≃ 0. A
short sequence 0 −→ X

f−→ Y
g−→ Z −→ 0 is said exact if it is exact at X,

Y and Z.

In this lecture we will argue with a general abelian category as if it
were the category Mod(R) for some ring R. This is justified by the
Freyd-Mitchell embedding theorem: for any “small” abelian category
C there exists a fully faithful functor C −→ Mod(R) for some ring R
(see [7] section 1.6). Without using this result we can also turn a
“chase diagram proof” in Mod(R) into a proof for a general abelian
category by using the following notion of “member” (for details see [3,
§VIII.4]). For A ∈ C, a member of A is a morphism x : X −→ A; we
write x ∈m A. We say that two members x, y ∈m A are equivalent and
write x ≡ y if there exist epimorphisms u : W −→ X, v : W −→ Y such
that x ◦ u = y ◦ v. This is an equivalence relation. We have a list of
properties of members similar to the expected properties of elements of
a module over a ring. For example (i) f : A −→ B is a monomorphism
if and only if for all x ∈m A, f ◦ x ≡ 0 implies x ≡ 0; (ii) a sequence
A

f−→ B
g−→ C is exact at B if and only if g ◦ f = 0 and for any y ∈m B

such that g ◦ y ≡ 0 there exists x ∈m A such that f ◦ x ≡ y; . . . (see [3,
§VIII.4, Thm 3]).
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Lemma 5.6. Let C be an abelian category and let

X
u //

f
��

X ′

f ′

��
Y

v // Y ′

be a commutative diagram in C. Then there exist unique morphisms
keru −→ ker v and cokeru −→ coker v such that the following diagram
commutes

keru //

��

X
u //

f
��

X ′

f ′

��

// cokeru

��
ker v // Y

v // Y ′ // coker v.
Let X be a topological space.

Proposition 5.7. The category Psh(X) is abelian. Moreover, for
u : P −→ P ′ in Psh(X), we have, for any open subset U ⊂ X,

(keru)(U) ≃ ker(u(U) : P (U) −→ P ′(U)),
(cokeru)(U) ≃ coker(u(U) : P (U) −→ P ′(U)),

and, for all x ∈ X, (keru)x ≃ ker(ux) and (cokeru)x ≃ coker(ux).

Remark 5.8. Let C be a category and C ′ a full subcategory of C,
which means that Ob(C ′) is a subset of Ob(C) and that HomC′(X, Y ) =
HomC(X, Y ) for any X, Y ∈ C ′.

For X, Y ∈ C ′, if the product X × Y exists in C and belongs to C ′,
then it is the product of X and Y in C ′. A similar remark holds for the
coproduct, the kernel and the cokernel.

Proposition 5.9 (Back to associated sheaf). For any P ∈ Psh(X),
there exist P a ∈ Sh(X) and a morphism i : P −→ P a which is universal
in the sense: for any j : P −→ F , with F ∈ Sh(X), there exists a unique
f : P a −→ F such that j = f ◦ i:

P P a

F

i

j
f

Moreover ix : Px −→ P a
x is an isomorphism, for each x ∈ X.

Proposition 5.10. The category Sh(X) is abelian. Moreover, for
u : F −→ F ′ in Sh(X), we have, denoting by ū the morphism u viewed
in Psh(X),

(a) ker ū is a sheaf and keru ≃ ker ū,
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(b) cokeru ≃ (coker ū)a,
(c) for all x ∈ X, (keru)x ≃ ker(ux) and (cokeru)x ≃ coker(ux).

Lemma 5.11. Let X be a topological space. If a sequence F u−→ G
v−→ H

is exact in Psh(X), then the sequence Fx
ux−→ Gx

vx−→ Hx is exact for
each x ∈ X.

A sequence F u−→ G
v−→ H in Sh(X) is exact if and only if the sequence

Fx
ux−→ Gx

vx−→ Hx is exact for each x ∈ X.
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6. Exercises

Exercise 6.1. (My proof of Proposition 3.9 was a bit intricate. Here
is a first step which can help.) Let X be a topological space, P,Q ∈
Psh(X) and let f : P −→ Q be a morphism. Let x ∈ X. We assume
that fx : Px −→ Qx is surjective. Let U ∈ Op(X) such that x ∈ U and
let s ∈ Q(U). Prove that there exist a smaller open set V ⊂ U , with
x ∈ V , and t ∈ P (V ) such that f(V )(t) = s|V .

Exercise 6.2. (i) Let X be a topological space and A an abelian group.
We define P ∈ Psh(X) as follows. For U ∈ Op(X), P (U) = {f : U −→
A; f has a finite support}. Here “finite support” means that f(x) = 0
except for finitely many x. The restriction maps P (U) −→ P (V ) are
defined as the usual restriction maps of functions, f 7→ f |V .

Prove that P is not a sheaf. Prove that Px ≃ A for all x ∈ X (like
the constant sheaf AX).
(ii) We define F ∈ Psh(X) as follows. For U ∈ Op(X), F (U) =
{f : U −→ A; f has a locally finite support} (by this we mean that any
x ∈ U has a neighborhood V such that f |V has finite support). Prove
that F is a sheaf. Prove that Fx ≃ A for all x ∈ X. Prove that F = P a.

Exercise 6.3. Let X be a topological space. Let F,G ∈ Sh(X) and
U ∈ Op(X). We define F |U ∈ Sh(U) by

F |U(V ) = F (V ), for V ∈ Op(U)
(check quickly that this defines indeed a sheaf). For f : F −→ G we also
define f |U : F |U −→ G|U by f |U(V ) = f(V ), for V ∈ Op(U). We obtain
in this way a functor Sh(X) −→ Sh(U), F 7→ F |U .

Now we define a presheaf Hom(F,G) ∈ Psh(X) by
Hom(F,G)(U) = HomSh(U)(F |U , G|U).

Prove that Hom(F,G) is a sheaf.

Exercise 6.4. Let X be a topological space and A an abelian group.
Let U1, U2 ∈ Op(X) such that X = U1 ∪ U2. Let F ∈ Sh(X). We
define F |Ui

∈ Sh(Ui) as in Exercise 6.3. We assume that there exist
isomorphisms φi : F |Ui

∼−→ AUi
, for i = 1, 2. We also assume that

U1 ∩U2 is connected. Prove that F ≃ AX . (For U1 ∩U2 not connected
see Exercise 6.4.)

Exercise 6.5. (Notations of Exercises 6.3 6.4.) Let X = C \ {0}. Let
α ∈ C \ Z. We consider the differential equation (E) : z ∂f

∂z
= αf (with

local solution “z 7→ zα”). For U ∈ Op(X) we set F (U) = {f : U −→ C;
f is a solution of (E)}. Check that F is a sheaf. Find U1, U2 ∈ Op(X)
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such that X = U1 ∪U2 such that there exist isomorphisms F |Ui
≃ CUi

,
for i = 1, 2. Prove that F ̸≃ CX .



HOMOLOGICAL ALGEBRA AND SHEAF THEORY 19

7. Exercises

Exercise 7.1. In an additive category C, prove that f is an monomor-
phism if and only if the kernel of f exists and is 0. Prove that f is an
epimorphism if and only if coker f ≃ 0.

Exercise 7.2. Let C be an additive category and let f : X −→ Y be a
morphism in C. We assume that ker f exists. Prove that the morphism
if : ker f −→ X is a monomorphism.

Dually, if f has a cokernel, pf : Y −→ coker f is an epimorphism.

Exercise 7.3. Let C be an additive category and let X, Y ∈ C. Since
Hom(X,X×Y ) = Hom(X,X)×Hom(X, Y ), (idX , 0) gives a morphism
iX : X −→ X × Y . In the same way we define iY : Y −→ X × Y .

We also have Hom(X⊕Y, Z) = Hom(X,Z)×Hom(X,Z) and (iX , iY )
defines u : X ⊕ Y −→ X × Y . Prove that u is an isomorphism.

Exercise 7.4. Let X be a topological space, and Z ⊂ X a closed
subset. Let A be an abelian group. We define the presheaf PAX,Z on
X by PAX,Z(U) = 0 if Z ∩ U = ∅ and PAX,Z(U) = A if Z ∩ U ̸= ∅
with the restriction maps rV,U = idA if V ∩Z ̸= ∅ (otherwise rV,U must
be 0).

We set AX,Z = (PAX,Z)a. Using the construction of P a in the proof
of Proposition 3.10 check that AX,Z(U) = {f : U ∩ Z −→ A; f is lo-
cally constant}. (Here, locally constant means: any x ∈ U ∩ Z has a
neighborhood V (x) such that f |V (x) is constant.) In particular, if X is
locally connected, then AX,Z(U) ≃ Aπ0(Z∩U), where π0(Z∩U) is the set
of connected components of Z ∩ U . Note that, when X is not locally
connected, for example X = Q, this last description does not hold.

Check that (AX,Z)x ≃ A if x ∈ Z and (AX,Z)x ≃ 0 otherwise.

Exercise 7.5. In the previous exercise we could try to remove the
condition “Z is closed” but the result is more complicated. Set A′

X,Z =
(PAX,Z)a for a general Z. Describe A′

X,Z if we take (1) X = Rn, Z
an open ball in Rn (2) X = R, Z = R \ {0}. In particular the stalks
(A′

X,Z)x don’t satisfy the same relation as in the previous exercise.

Exercise 7.6. Let X be a topological space and Z ⊂ X a closed
subset. Let A be an abelian group. Recall the “constant sheaf on Z”
AX,Z , such that AX,Z(U) = {f : U ∩ Z −→ A; f is locally constant}.

Let Z ′ ⊂ Z be a closed subset. We define a morphism resZ
Z′ : AX,Z −→

AX,Z′ by r(U)(f) = f |U∩Z′ (check that this is a sheaf morphism). For
an open subset U ⊂ X we define

AX,U = ker(rX
X\U : AX,X −→ AX,X\U).
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Verify that (AX,U)x ≃

A if x ∈ U,
0 if x ̸∈ U.

Exercise 7.7. Let X be a topological space, U ⊂ X an open subset
and Z = X \ U . We set F = AX,U ⊕ AX,Z . Check that there exist
two exact sequences: 0 −→ AX,U −→ F −→ AX,Z −→ 0 and 0 −→ AX,U −→
AX,X −→ AX,Z −→ 0.

Check that Fx ≃ (AX,X)x for all x ∈ X.
We consider X = R, U = ]−∞, 0[ and Z = [0,+∞[. Prove that

Hom(AX,Z , AX,X) = 0.
With F as above, prove that F ̸≃ AX,X .

Exercise 7.8. Let C be an abelian category and let X f−→ Y
g−→ Z

be two morphisms in C. We assume that ker(g ◦ f) = 0. Prove that
ker(f) = 0.

Exercise 7.9. Let C be a category. We define the category of mor-
phisms in C, say Mor(C), as the category whose objects are the mor-
phisms in C (that is an object is the data of X u−→ X ′) and the mor-
phisms are the commutative diagrams HomMor(C)((X u−→ X ′), (Y v−→
Y ′)) = {(f, f ′); f : X −→ Y , f ′ : X ′ −→ Y ′, v ◦ f = f ′ ◦u}. The composi-
tion is given termwise by the composition in C, that is, (g, g′)◦(f, f ′) =
(g ◦ f, g′ ◦ f ′).

We assume that C is abelian. Prove that Mor(C) is also abelian. (To
save time, you can admit that Mor(C) is additive and check only the
existence of kernels, cokernels and Definition 5.2 using Lemma 5.6.)

Exercise 7.10. We let OC ∈ Sh(C) be the sheaf of holomorphic func-
tions over C, that is, OC(U) = {f : U −→ C; f is holomorphic}. We let
O×

C be the sheaf of non vanishing holomorphic functions and we denote
by exp: OC −→ O×

C the morphism f 7→ exp(f). Prove that we have an
exact sequence 0 −→ ZC −→ OC

exp−−→ O×
C −→ 0 in Sh(C).

Prove that this sequence is not exact in Psh(C).

Exercise 7.11. (Variation on Exercise 7.10) We keep the notations of
Exercise 7.10 Let u : OC −→ OC be the derivation, that is, u(U)(f) = f ′

for f ∈ OC(U). What is keru, cokeru in Sh(C)? Prove that u is not
surjective in Psh(C).

Exercise 7.12. Inductive limit (also called “colimit”). We give
a definition in the special case of a filtrant indexing set. Let (I,≤) be
an ordered set which is filtrant, which means: for any i, j ∈ I there
exists k ∈ I such that i ≤ k and j ≤ k. Typical examples are I = N
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and, for a topological space X and a point x ∈ X, I is the set of open
neighborhoods of x.

Let {Ei, uji} be an inductive system of sets indexed by I, which
means: uji is a map uji : Ei −→ Ej for any i ≤ j such that uii = idEi

and ukj ◦ uji = uki when i ≤ j ≤ k. Then
lim−→
i∈I

Ei =
⊔
i∈I

Ei/ ∼,

where ∼ is the equivalence relation defined by xi ∈ Ei ∼ xj ∈ Ej

if there exists k with i, j ≤ k and uki(xi) = ukj(xj). This set comes
with natural maps ui : Ei −→ lim−→i∈I Ei induced by the inclusion of Ei

in ⊔Ek. We remark that any element of lim−→i∈I Ei is represented by an
element xi0 ∈ Ei0 for some i0 ∈ I.

(1) Check that, if the Ei are groups and the uji are group morphisms,
then lim−→i∈I Ei has a unique group structure such that the maps ui are
group morphisms.

(2) When I = N we only need to specify the maps ui+1,i. Take
Ei = Z for all i and ui+1,i(x) = 2x for all i. We write for short
lim−→i∈N

Ei = lim−→(Z 2·−→ Z 2·−→ Z 2·−→ · · · ). What is this colimit ? (Identify
with a subgroup of Q.)

(3) Give an example of an inductive system of groups indexed by N,
E0

u1,0−−→ E1 −→ · · · , where all groups and all maps ui+1,i are non zero,
but lim−→i∈N

Ei ≃ 0.
(4) Let P be a presheaf on a topological space X and x ∈ X. We

assume that x has a countable system of decreasing open neighborhoods
Bn. (Typically X = Rn and Bn is the open ball with center x and radius
1/n.) Check that Px ≃ lim−→n∈N

P (Bn).

Exercise 7.13. We keep the framework of Exercise 7.12. Let I be
a filtrant ordered set. Let {Ei, uji}, {Fi, vji} be inductive systems
indexed by I. We remark that lim−→i∈I Ei comes with maps πi : Ei −→
lim−→i∈I Ei (we use abusively the same notation for the Fi’s). We assume
to be given maps fi : Ei −→ Fi commuting with the uji, vji.

Check that these maps induce a unique map f : lim−→i∈I Ei −→ lim−→i∈I Fi

such that f ◦ πi = πi ◦ fi for all i.
Now we assume that our inductive systems are made of abelian

groups and all maps are additive. Then lim−→i∈I Ei is an abelian group.
We remark that uji maps ker(fi) to ker(fj) and we obtain an inductive
system {ker(fi), uji}. Check that lim−→i∈I ker(fi) ≃ ker(f).

In the same way check that lim−→i∈I coker(fi) ≃ coker(f).
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8. Homework

Exercise 8.1. Let k be a commutative field and V the category of
k-vector spaces. Let idV be the identity functor of V . For a ∈ k we
define a morphism of functors θa : idV −→ idV by θa(E) = a idE for every
vector space E. Prove that this gives all morphisms from idV to itself:

HomFct(V,V)(idV , idV) = k.

Exercise 8.2. Let Abf be the category of finite abelian groups.
For G ∈ Abf a character of G is a group morphism χ : G −→ C∗

(with C∗ = C \ {0} the multiplicative group). We define the group
of characters Ĝ = HomAb(G,C∗), where the product is defined by
(χ1χ2)(g) = χ1(g)χ2(g). Prove that Ẑ/nZ ≃ Z/nZ. Prove that
Ĝ1 ×G2 ≃ Ĝ1 × Ĝ2 for G1, G2 ∈ Abf . Since any G ∈ Abf is de-
composed as a product of cyclic groups, this proves that there exists
an isomorphism G ≃ Ĝ. Deduce that Abop

f is equivalent to Abf .

Exercise 8.3. Let C be the category Mod(R) for some ring R (we can
take C = Ab). We define the category of morphisms in C, say Mor(C),
as the category whose objects are the morphisms in C (that is an ob-
ject is the data of X f−→ Y ) and the morphisms are the commutative
diagrams

HomMor(C)((X
f−→ Y ), (X ′ f ′

−→ Y ′))
= {(u, v); u : X −→ X ′, v : Y −→ Y ′, v ◦ f = f ′ ◦ u}

illustrated by
X X ′

Y Y ′

u

f f ′

v

The composition is given termwise by the composition in C, that is,
(u2, v2) ◦ (u1, v1) = (u2 ◦ u1, v2 ◦ v1).

We admit that Mor(C) is abelian with sums, kernels, cokernels given
termwise (for example with the above notations ker(u, v) = (ker(u) f̄−→
ker(v)) where f̄ is induced by f – see Lemma 5.6).

(i) Let (P a−→ Q) be a projective object in Mor(C). Prove that P and
Q must be projective in C. Prove that there exists b : Q −→ P such that
b ◦ a = idP .

(ii) Let P be a projective object in C. Prove that (0 −→ P ) and (P id−→ P )
are projective in Mor(C).
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(iii) Prove that there are “enough projectives” in Mor(C) in the sense
that, for any (X f−→ Y ) there exists (P a−→ Q) a projective object in

Mor(C) and an epimorphism
P X 0

Q Y 0

u

a f

v

Exercise 8.4. Let k be a ring. Let W ⊂ Rn be a subset. For U ∈
Op(Rn) we define

kW (U) = {f : W ∩ U −→ k; f is locally constant and
supp(f) is closed in U},

where supp(f) = {x ∈ W ∩ U ; f(x) ̸= 0}.
(i) For n = 1, W = [0, 2[ (or [0, 2) in english notation), what is
kW (]−1, 1[), kW (]0, 2[), kW (]1, 3[)?
(ii) For U ′ ⊂ U , U ′ open, check that the restriction of functions f 7→
f |U ′ gives a map kW (U) −→ kW (U ′). Prove that kW is a sheaf.
(iii) We say that W is “locally closed” if we can write W = V ∩Z, with
V open and Z closed. In this case prove that

(kW )x ≃

k if x ∈ W,
0 if x ̸∈ W.

(iv) For n = 2, we consider W = [0,+∞[× ]0,+∞[∪{(0, 0)}. What is
(kW )(0,0)?
(v) Let W ⊂ Rn be locally closed. Let W1 ⊂ W be closed in W . For
U ∈ Op(Rn) check that the restriction of functions f 7→ f |U∩W1 gives
a map kW (U) −→ kW1(U) and that this gives a morphism of sheaves
kW −→ kW1 .
(vi) For n = 1, we set I = [0, 3], J = ]1, 2[. Prove that there is no
non-zero morphism of sheaves kI −→ kJ .



24 HOMOLOGICAL ALGEBRA AND SHEAF THEORY

9. Correction of the homework

Exercise 9.1. (i) θa : idV −→ idV is a morphism of functors: For E ∈ V
we have idV(E) = E. So we have to check that, for any morphism
f : E −→ F in V the diagram

E
a idE //

f
��

E

f
��

F
a idF

// F.

is commutative. This follows from the linearity of the map f .
(ii) Conversely, let θ : idV −→ idV be a morphism of functors. For E = k,
θ(k) is a linear map from k to k. Such a map is a multiplication by a
scalar. So θ(k) = a idk, for some a ∈ k. Now let E ∈ V and let x ∈ E.
We define f : k −→ E by f(t) = tx. Since θ is a morphism of functors,
we have the commutative diagram

k a idk //

f
��

k
f
��

E
θ(E)
// E.

It follows that (θ(E))(x) = ax. This holds for any x ∈ E, so θ(E) =
aidE. Finally θ = θa, as required.

Exercise 9.2. (i) We remark that a group morphism χ : Z/nZ −→ C∗ is
determined by z = χ(1). Conversely, z ∈ C∗ defines a group morphism
χ : Z/nZ −→ C∗ with z = χ(1) if and only if zn = 1. Let Un ⊂ C∗ be the
group of nth-roots of 1. Then χ 7→ χ(1) gives a bijection an : Ẑ/nZ −→
Un. Since the group structure on Ẑ/nZ is induced by the multiplication
on C∗, the map an is a group morphism. Hence Ẑ/nZ ≃ Un. Since
Un ≃ Z/nZ, this proves the result.
(ii) Let i1 : G1 −→ G1×G2, g 7→ (g, 0), and i2 : G2 −→ G1×G2, g 7→ (0, g).
Then i1, i2 are group morphisms. We define a first map a : Ĝ1 ×G2 −→
Ĝ1×Ĝ2 by a(χ) = (χ◦i1, χ◦i2) (we note that χ◦ik is a group morphism
since it is the composition of two morphisms). For χ, χ′ ∈ Ĝ1 ×G2, we
have (χ · χ′) ◦ ik = (χ ◦ ik) · (χ′ ◦ ik). Hence a is a group morphism.

Similarly, we define p1 : G1 × G2 −→ G1 and p2 : G1 × G2 −→ G2 by
pk(g1, g2) = gk. Then p1, p2 are group morphisms, hence (χ1 ◦ p1) and
(χ2 ◦ p2) also, and we can define b : Ĝ1× Ĝ2 −→ Ĝ1 ×G2 by b(χ1, χ2) =
(χ1 ◦ p1) · (χ2 ◦ p2).
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Now we have (b◦a)(χ) = b(χ◦i1, χ◦i2) = (χ◦i1◦p1)·(χ◦i2◦p2), hence
((b ◦ a)(χ))(g1, g2) = χ(g1, 1) · χ(1, g2) = χ((g1, 1) · (1, g2)) = χ(g1, g2).
Hence b ◦ a = id.

We also have (a ◦ b)(χ1, χ2) = (χ1 ◦ p1 ◦ i1, χ2 ◦ p2 ◦ i2) = (χ1, χ2).
Hence a ◦ b = id.

This proves that a is also bijective and Ĝ1 ×G2 ≃ Ĝ1 × Ĝ2.

(iii) We remark that G 7→ Ĝ reverses the composition of maps: a group
morphism u : G −→ H gives a morphism û : Ĥ −→ Ĝ by û(χ) = χ ◦ u.
Then we have û ◦ v = v̂ ◦ û. So we obtain a functor F : Ab −→ Abop,
G 7→ F(G) := Ĝ.

We claim that F ◦ F ≃ id.
Indeed we have a morphism evG : G −→ ̂̂

G for any abelian group G
defined by evG(g) : Ĝ −→ C∗, (evG(g))(χ) = χ(g). If G is finite, the
morphism evG is injective since, for any g ̸= 0 ∈ G we can find χ ∈ Ĝ
such that χ(g) ̸= 1: decomposing G as a product of cyclic groups we
can assume G is cyclic, say G = Z/nZ, in which case the character
χ0 : G −→ C∗, [p] 7→ exp(2iπp/n), is injective.

Since evG is injective and |G| = | ̂̂G| (because G and ̂̂
G are isomor-

phic), we see that evG is an isomorphism.
Hence ev : id −→ F ◦ F , defined by ev(G) = evG, is an isomorphism

of functors. This proves that Ab ∼−→ Abop.

Exercise 9.3. (i-a) We prove that P is projective. Let u : X ↠ X ′ be
an epimorphism in C and v : P −→ X ′ be any morphism. We consider

ũ =
X X ′

0 0

u

ṽ =
P X ′

Q 0

v

We know that there exists w̃ such that ṽ = ũ ◦ w̃. Writing w̃ = (w, 0)
we see that w satisfies v = u ◦ w, as required.

(i-b) We prove that Q is projective. Let u : Y ↠ Y ′ be an epimor-
phism in C and v : Q −→ Y ′ be any morphism. We consider

ũ =
Y Y ′

Y Y ′

u

id id

u

ṽ =
P Y ′

Q Y ′

v◦a

a id

v

Again there exists w̃ = (w1, w2) such that ṽ = ũ ◦ w̃. We have in
particular v = u ◦ w2, as required.
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(i-c) We have an epimorphism ũ = (idP , 0) : (P −→ P ) ↠ (P −→ 0)
and a morphism ṽ = (idP , 0) : (P −→ Q) −→ (P −→ 0):

ũ =
P P

P 0

idP

idP
ṽ =

P P

Q 0

idP

a

We can factorize ṽ through w̃ = (w1, w2) : (P −→ Q) −→ (P −→ P )

w̃ =
P P

Q P

w1

a idP

w2

such that ṽ = ũ ◦ w̃. We obtain w2 ◦ a = idP ◦ w1 and idP = idP ◦ w1.
Hence w1 = idP and w2 ◦ a = idP . We can take b = w2.

(ii) We pick an epimorphism ũ = (u1, u2) : (X f−→ Y ) ↠ (X ′ f ′
−→ Y ′)

and a morphism ṽ = (0, v2) : (0 −→ P ) ↠ (X ′ f ′
−→ Y ′):

X X ′

Y Y ′

u1

f f ′

u2

0 X ′

P Y ′

0

0 f ′

v2

Since P is projective, we can factorize v2 through w2 : P −→ Y and we
set w̃ = (0, w2). Then ṽ = ũ ◦ w̃ as required.

For the case (P id−→ P ) we use the notations:

ũ =
X X ′

Y Y ′

u1

f f ′

u2

ṽ =
P X ′

P Y ′

v1

idP f ′

v2

We must have v2 = f ′ ◦ v1. Since P is projective, we can factorize v1

through w1 : P −→ X. We set w̃ =
P X

P Y

w1

idP f

f◦w1

. Then ṽ = ũ ◦ w̃.

(iii) It is a general fact that the sum of two projectives P, P ′ is projec-
tive, because Hom(P ⊕P ′, X) = Hom(P,X)⊕Hom(P ′, X) for any X.
Since Mod(R) has enough projectives we can find projectives P,Q and



HOMOLOGICAL ALGEBRA AND SHEAF THEORY 27

epimorphisms u0 : P ↠ X, v0 : Q ↠ Y . We define
P X

P ⊕Q Y

u

a f

v

by a = (idP , 0), u = u0, v = (f ◦ u0, v0). The diagram commutes, u,
v are epimorphisms and (P a−→ P ⊕ Q) = (P idP−−→ P ) ⊕ (0 −→ Q) is
projective, as required.

Exercise 9.4. (i-a) By definition kW (]−1, 1[) = {f : [0, 1[ −→ k; f
is locally constant and supp(f) is closed in ]−1, 1[}. Since [0, 1[ is
locally connected and connected, f is constant on [0, 1[. Then its sup-
port is empty or [0, 1[ and in both cases it is closed in ]−1, 1[. Hence
kW (]−1, 1[) ≃ k.

(i-b) The case kW (]0, 2[) is completely similar, replacing ]−1, 1[ by
]0, 2[. We find kW (]0, 2[) ≃ k.

(i-c) By definition kW (]1, 3[) = {f : ]1, 2[ −→ k; f is locally constant
and supp(f) is closed in ]1, 3[}. Again f is constant on ]1, 2[. Hence,
if f ̸= 0, its support is ]1, 2[, which is not closed in ]1, 3[. So we must
have f = 0: kW (]1, 3[) = 0.

(ii) Let f ∈ kW (U), that is, f : U ∩ W −→ k locally constant with
supp(f) closed in U . So we can write supp(f) = Z∩U , with Z closed in
Rn. Then f ′ = f |W ∩U ′ is still locally constant and we have: supp(f ′) =
U ′ ∩ supp(f) = U ′ ∩ (U ∩ Z) = U ′ ∩ Z is closed. Hence f ′ belongs to
kW (U ′), as required.

For U ′′ ⊂ U ′ ⊂ U it is clear that (f |W ∩U ′)|W ∩U ′′ = f |W ∩U ′′ . Hence
kW is a presheaf. Now assume U has a covering U = ⋃

i∈I Ui. The
“separation” property holds because it holds for functions. For the
“gluing” property, let fi ∈ kW (Ui) be functions which coincide on the
double intersections Ui ∩Uj. We can glue the fi’s as a function f : U ∩
W −→ k. Then f is locally constant and we have to check the support
condition. We set V = U \ supp(f) and Vi = Ui \ supp(fi). Since Vi is
open in Ui and Ui is open in Rn, Vi is also open in Rn. Since f |Ui

= fi

we have V ∩ Ui = Vi. Hence V = ⋃
i(V ∩ Ui) = ⋃

i Vi is open. Hence
supp(f) is closed in U .

(iii-a) We first assume x ∈ W . For an open set U with x ∈ U we
define evU

x : kW (U) −→ k by f 7→ f(x). If U ′ ⊂ U , we have of course
f |U ′∩W (x) = f(x). Hence evU ′

x (f |U ′) = evU
x (f). It follows that the maps

evU
x , for U running over the open neighborhoods of x are compatible

and define a map evx : (kW )x = lim−→U, x∈U
kW (U) −→ k. This map is

clearly k-linear.
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Let us prove that u is bijective. First assume that evx(g) = 0 for some
g ∈ (kW )x. The germ g is represented by f ∈ kW (U) for some open
neighborhood U of x. Then we have evx(g) = evU

x (f) = f(x). Then
f(x) = 0. Since f is locally constant we can find some neighborhood
U ′ of x, with U ′ ⊂ U , such that f ≡ 0 on U ′. But f |U ′ also represents
g. Hence g = 0, as required.

Now we prove that evx is surjective. Since the target is k it is enough
to find a preimage for 1 ∈ k. We can write W = V ∩ Z, V open, Z
closed. In particular W is closed in V . We define f : W ∩V = W −→ k,
by f(x) = 1 for all x ∈ W . Then supp(f) = W is closed in V and
f defines a section f ∈ kW (V ). Since x ∈ W ⊂ V , V is an open
neighborhood of x, and f defines a germ g = [f ] ∈ (kW )x. We have
evx(g) = evV

x (f) = f(x) = 1, as required.

(iii-b) We assume x ̸∈ W . We pick a germ g ∈ (kW )x, represented
by f ∈ kW (U) for some open neighborhood U of x. By definition we
have supp(f) ⊂ W and supp(f) closed in U . Since x ̸∈ W , we have
x ̸∈ supp(f). Since supp(f) is closed in U , we can find a smaller open
neighborhood of x, say U ′ ⊂ U , such that U ′ ∩ supp(f) = ∅. Then
f |W ∩U ′ = 0. But f |W ∩U ′ is also a representative of g. Hence g = 0.
Finally (kW )x = 0.

(iv) We set x = (0, 0). We pick a germ g ∈ (kW )x, represented by
f ∈ kW (U) for some open neighborhood U of x. Since f : W ∩ U −→ k
is locally constant, we can find a small disc D = D(x, ε), ε > 0, such
that D ⊂ U and f |W ∩D is constant, say with value c. If c ̸= 0, we then
have supp(f) ∩ D = W ∩ D. But W ∩ D is not closed in D and we
have a contradiction. Hence c = 0 and f vanishes in a neighborhood
of x. It follows as in (iii-b) that g = 0. Finally (kW )x = 0.

(v) Let f ∈ kW (U), f : W ∩ U −→ k. We have to check that f1 =
f |W1∩U : W1 ∩ U −→ k is locally constant and supp(f1) is closed in U .
If f is constant on W ∩ V for some open susbet V ⊂ U , then f1
is constant on W1 ∩ V . Hence f1 is locally constant. We also have
supp(f1) = W1 ∩ supp(f). Since W1 is closed in W , we can write
W1 = W∩Z1, with Z1 closed in Rn. We can also write supp(f) = Z2∩U ,
with Z2 closed in Rn. Then supp(f1) = Z1 ∩ Z2 ∩ U is closed in U .

For an open subset U ′ ⊂ U , we have (f |W1∩U)|U ′ = (f |U ′)|W1∩U ′ .
This proves that f 7→ f |W1∩U defines a morphism of sheaves.

(vi) Let u : kI −→ kJ be a morphism of sheaves. As in (i), we have
kI(K) ≃ k, for any interval K = ]a, b[, and kJ(R) ≃ 0. Since u is a
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morphism of sheaves we have the commutative diagram:

k ≃ kI(R) kJ(R) = 0

k ≃ kI(K) kJ(K)

u(R)

rR
K=id

u(K)

It follows that u(K) = 0. This holds for any interval K. Now, any open
subset U of R is a union of disjoint intervals, say U = ⋃

i∈I Ki. Then
kI(U) ≃ ∏

i∈I kI(Ki), kJ(U) ≃ ∏
i∈I kJ(Ki) and u(U) = ∏

i∈I u(Ki).
Hence u(U) = 0. Finally u = 0.
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10. Categories of complexes

Definition 10.1. Let C be an additive category. A complex (X ·, d·
X)

in C is a sequence of composable morphisms in C

· · · −→ X i di
X−→ X i+1 −→ · · ·

such that di+1 ◦ di = 0, for all i ∈ Z (we forget the subscripts when
there is no ambiguity). The morphisms di

X are called the differentials.
A morphism f from a complex (X ·, d·

X) to a complex (Y ·, d·
Y ) is

a sequence of morphisms f i : X i −→ Y i, i ∈ Z, commuting with the
differentials.

We denote by C(C) the category of complexes in C. A complex is
said bounded from below (resp. above) if X i ≃ 0 for i ≪ 0 (resp.
i≫ 0). It is bounded if it is bounded from below and from above. We
let C+(C), C−(C), Cb(C) be the corresponding categories.

These categories C•(C) are additive and the sum (of objects or mor-
phisms) is made “degreewise”: (X ⊕ Y )i = X i ⊕ Y i,. . .

We recall that any morphism f : A −→ B in an abelian category
factorizes as A

p′
f−→ im f

i′
f−→ B (see (5.1)) and we have the exact se-

quences (5.2):

0 −→ ker f if−→ A
p′

f−→ im f −→ 0,

0 −→ im f
i′
f−→ B

pf−→ coker f −→ 0.
Now let g : B −→ C be another morphism such that g ◦ f = 0. Then

(g ◦ i′f ) ◦ p′
f = 0 and, since p′

f is an epimorphism, g ◦ i′f = 0. We deduce
a uniquely defined morphism j : im f −→ ker g such that i′f = ig ◦ j.
Since i′f is a monomorphism, we see that j is also a monomorphism
(check!). We write

im f
j
↪→ ker g

ig

↪→ B

and, since j is a monomorphism, we often use the notation coker j =
ker g/ im f .

Definition 10.2. Let C be an abelian category and let X = (X ·, d·
X) ∈

C(C). For i ∈ Z we define
Zi(X) = ker di

X , Bi(X) = im di−1
X ,

H i(X) = Zi(X)/Bi(X) = coker(Bi(X) −→ Zi(X))

and we call H i(X) the ith cohomology of X. (We also call Zi(X) (resp.
Bi(X)) the ith group of cocycles (resp. coboundaries).)
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For a morphism of complexes f : X −→ Y we denote by Zi(f), Bi(f),
H i(f) the induced morphisms, which exist and are well-defined by
Lemma 5.6. We see that Zi, Bi, H i are functors from C(C) to C.

As in Exercise 7.9 we can prove:

Lemma 10.3. If C is abelian, then C(C) is also abelian. Moreover for
a morphism f : X −→ Y in C(C) the kernel satisfies (ker f)i = ker(f i)
and the differential di

ker f is the natural morphism ker(f i) −→ ker(f i+1)
given by Lemma 5.6. The same holds for the cokernel.

Here are useful lemmas to deal with complexes and long cohomology
sequences.

Lemma 10.4. Let C be an abelian category. We consider the commu-
tative diagram in C

0 // X
f //

u
��

Y
g //

v
��

Z

w
��

0 // X ′ f ′
// Y ′ g′

// Z ′

resp. X
f //

u
��

Y
g //

v
��

Z

w
��

// 0

X ′ f ′
// Y ′ g′

// Z ′ // 0
and we assume that the rows are exact. Then this diagram induces
a canonical (in the sense detailed in Proposition 10.7) exact sequence
0 −→ keru −→ ker v −→ kerw (resp. cokeru −→ coker v −→ cokerw −→ 0).

Lemma 10.5 (The snake lemma – see [2] lem. 12.1.1). Let C be an
abelian category. We consider the commutative diagram in C

X
f //

u
��

Y
g //

v
��

Z //

w
��

0

0 // X ′ f ′
// Y ′ g′

// Z ′

and we assume that the rows are exact. Then this diagram induces a
canonical (in the sense detailed in Proposition 10.7) exact sequence

keru −→ ker v −→ kerw −→ cokeru −→ coker v −→ cokerw.

Lemma 10.6 (The five lemma). Let C be an abelian category. We
consider the commutative diagram in C

A //

a
��

B //

b
��

C //

c
��

D //

d
��

E

e
��

A′ // B′ // C ′ // D′ // E ′.

We assume that the rows are exact and that a, b, d, e are isomorphisms.
Then c is also an isomorphism.
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Proposition 10.7. Let C be an abelian category and let 0 −→ X
f−→

Y
g−→ Z −→ 0 be a short exact sequence in C(C). Then there exists a

canonical long exact sequence in C

· · · −→ Hn(X) Hn(f)−−−→ Hn(Y ) Hn(g)−−−→ Hn(Z) δn

−→ Hn+1(X)
Hn+1(f)−−−−−→ Hn+1(Y ) Hn+1(g)−−−−−→ Hn+1(Z) −→ · · · .

Canonical means here: if we have a commutative diagram of short exact
sequences

0 // X
f //

u
��

Y
g //

v
��

Z //

w
��

0

0 // X ′ f ′
// Y ′ g′

// Z ′ // 0,

then we obtain a commutative diagram of long exact sequences (in par-
ticular the squares Hn(Z) δn

//

Hn(w) ��

Hn+1(X)
Hn+1(u)��

Hn(Z ′) δ′n
// Hn+1(X ′)

).

Proof. For a given i, Lemma 10.4, applied with rows 0 −→ X i −→ Y i −→
Zi and 0 −→ X i+1 −→ Y i+1 −→ Zi+1 and vertical morphisms di

•, gives
the exact sequence “E(i)”: 0 −→ Zi(X) −→ Zi(Y ) −→ Zi(Z). In the
same we have the exact sequence “F (i)”: coker(di

X) −→ coker(di
Y ) −→

coker(di
Z) −→ 0.

We have morphisms coker di−1
• −→ Zi+1

• (see Lemma 10.8 below).
Then Lemma 10.5, applied with the rows F (i − 1) and E(i + 1) give
the exact sequence of the proposition. □

Lemma 10.8. Let C be an abelian category and let X = (X ·, d·
X) ∈

C(C). Then we have the exact sequence

0 −→ H i(X) −→ coker(di−1
X ) −→ Zi+1(X) −→ H i+1(X) −→ 0.

Proof. By definition of H i+1(X) we have the exact sequence X i
di

X−→
Zi+1(X) −→ H i+1(X) −→ 0. Since di

X ◦ di−1
X = 0, di

X factorizes through
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coker(di−1
X ) and gives the end of the sequence in the lemma:

X i−1

X i Zi+1(X) H i+1(X) 0

coker(di−1
X )

e

f

(Note that im(f) = im(e) since X i −→ coker(di−1
X ) is an epimorphism.)

The beginning of the sequence, 0 −→ H i(X) −→ coker(di−1
X ) −→ Zi+1(X),

follows from the snake lemma 10.5 applied to the diagram

X i−1 X i−1 0 0

0 Zi(X) X i Zi+1(X).

□
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11. Resolutions

In this section C is often an abelian category but sometimes additive
is enough.

Definition 11.1. Let C be an abelian category. An object P ∈ C is
projective if, for any given epimorphism v : B −→ C and any u : P −→ C,
there exists u′ : P −→ B such that u = v ◦ u′:

B C 0

P

v

u
u′

Injective is defined by reversing the arrows:
0 A B

I
We say that C has enough projectives if for any A ∈ C there exists

an epimorphism P ↠ A with P projective. (Enough injectives: ∀A,
∃A ↪→ I, I injective.)

Definition 11.2. Let M ∈ Ob(C). A left resolution of M is a complex
X = (X ·, d·

X) ∈ C(C) such that X i ≃ 0 for i > 0, together with a
morphism ε : X0 −→M such that the sequence

· · · −→ X−2 d−2
−−→ X−1 d−1

−−→ X0 ε−→M −→ 0

is exact. In particular H i(X) ≃ 0 for all i ̸= 0 and H0(X) ≃ M . A
resolution is called projective if all the X i’s are projective.

A right resolution is defined by reversing the arrows (hence we have
an exact sequence 0 −→ M

ε−→ X0 d0
−→ · · · ). It is called injective if all

the X i’s are injective.

Proposition 11.3. Let C be an abelian category. We assume that C
has enough projectives. Then any M ∈ Ob(C) has a projective (left)
resolution. Similarly, when we have enough injectives, we have injective
right resolutions.

Proof. By definition of “enough projectives” there exists an epimor-
phism P 0 ε−→ M with P 0 projective. We set M1 = ker ε i1

−→ P 0 and
choose an epimorphism P−1 e1

−→ M1. We set d−1 = i1 ◦ e1. We then
have the exact sequence P−1 d−1

−−→ P 0 ε−→M −→ 0. We set M2 = ker d−1

and proceed with M2 as with M1. We go on and obtain the resolution
by induction. □
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The next proposition says that a projective resolution is unique up
to homotopy in the following sense.

Definition 11.4. Let C be an additive category and let P = (P ·, d·
P ),

Q = (Q·, d·
Q) ∈ C(C). We say that two morphisms f, g : P −→ Q in C(C)

are homotopic if there exists a family of morphisms si : P i −→ Qi−1,
i ∈ Z, such that

fn − gn = dn−1
Q ◦ sn + sn+1 ◦ dn

P ,

for all n ∈ Z.

Proposition 11.5. Let C be an abelian category, let M ∈ Ob(C) and
let P = (P ·, d·

P ) ∈ C(C) together with ε : P 0 −→ M be a projective
resolution of M . Let f ′ : M −→ N be a morphism in C. Let X =
(X ·, d·

X) ∈ C(C) together with η : X0 −→ N be a left resolution of N .
Then there exists a morphism f : P −→ X in C(C) lifting f ′ in the sense
that f ′ ◦ ε = η ◦ f 0. In other words there exists a commutative diagram

· · · // P−2 d−2
P //

f−2

��

P−1 d−1
P //

f−1

��

P 0 ε //

f0

��

M

f ′

��
· · · // X−2

d−2
X

// X−1
d−1

X

// X0
η
// N.

Moreover, if g : P −→ X is another morphism lifting f ′, then f and g
are homotopic.

Proof. (i) The existence of f 0 follows from the facts that η is an epi-
morphism and P 0 is projective. Then we remark that f 0◦d−1

P factorizes
through ker η = im d−1

X . Hence we obtain f−1 in the same way, using
the facts that d−1

X is an epimorphism to its image and P−1 is projective.
We obtain all fk in this way inductively.

(ii) We set hk = fk − gk. We have the commutative diagram

· · · // P−2 d−2
P //

h−2
��

P−1 d−1
P //

h−1
��

P 0 ε //

h0
��

M

0
��

· · · // X−2
d−2

X

// X−1
d−1

X

// X0
η
// N.

Since η ◦ h0 = 0, h0 factorizes through i0 : P 0 −→ ker η = im d−1
X . Since

X−1 −→ im d−1
X and P 0 is projective, we can lift i0 to s0 : P 0 −→ X−1.

We then have h0 = d−1
X ◦ s0.
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We define h′−1 = h−1−s0◦d−1
P . Then d−1

X ◦h′−1 = 0 and we can apply
the same procedure to find s−1 : P−1 −→ X−2 such that h′−1 = d−2

X ◦s−1.
Hence h−1 = s0 ◦ d−1

P + d−2
X ◦ s−1. Now we go on inductively. □

We obtain the injective versions of Propositions 11.3 and 11.5 by
reversing the arrows.

The homotopy relation is compatible with the additive structure of
Hom(P,Q) and with the composition in C(C). It follows that we can
define a category of complexes up to homotopy as follows.

Definition 11.6. Let C be an additive category. We define a category
K(C) by Ob(K(C)) = Ob(C(C)) and

HomK(C)(P,Q) = HomC(C)(P,Q)/ ∼h,

where ∼h is the homotopy relation on HomC(C)(P,Q). Then K(C) is
an additive category.

We have an obvious functor C(C) −→ K(C) which is the identity on
objects and the quotient map on the morphisms.

It is easy to check that two homotopic morphisms of complexes in-
duce the same morphism on homology (when C is abelian):

Lemma 11.7. Let C be an abelian category and let f : X −→ Y be a
morphism in C(C). We assume that f is homotopic to the zero mor-
phism. Then H i(f) : H i(X) −→ H i(Y ) is zero, for all i ∈ Z. In partic-
ular the homology functors H i : C(C) −→ C induce well-defined functors
H i : K(C) −→ C.

Let Kpr(C) be the full subcategory of K(C) formed by the complexes
P = (P ·, d·

P ) such that P i = 0 for i > 0, H i(P ) ≃ 0 for all i ̸= 0 and
P i is projective for each i ≤ 0 (“pr” stands for “projective resolution”).
Then Propositions 11.3 and 11.5 give

Proposition 11.8. The functor H0 : Kpr(C) −→ C is essentially sur-
jective and fully faithful. In other words, it is an equivalence and we
can find a quasi-inverse respr : C −→ Kpr(C).

Different choices of inverse toH0 : Kpr(C) −→ C give different functors
respr but they are (canonically) isomorphic by the following remark.

Remark 11.9. Let F : A −→ B be a functor between two categories
which is an equivalence of categories. Let G1, G2 : B −→ A be inverses
of F , together with isomorphisms of functors εi : F ◦Gi

∼−→ idB. Then
there exists a unique isomorphism of functors ε : G1 ∼−→ G2 such that
F ◦ ε = ε2 ◦ ε−1

1 , where F ◦ ε denotes abusively the morphism given by
(F ◦ ε)(X) = F (ε(X)), for X ∈ A.
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Indeed, we must define ε(Y ) : G1(Y ) −→ G2(Y ), Y ∈ B, as the in-
verse image of ε2(Y )◦ε−1

1 (Y ) by the bijection Hom(G1(Y ), G2(Y )) ∼−→
Hom(F ◦ G1(Y ), F ◦ G2(Y )), and we can check that this gives an iso-
morphism of functors.

Definition 11.10. A functor F : C −→ C ′ between additive categories
is additive if F commutes with ⊕ and, for all A,B ∈ C, the maps
Hom(A,B) −→ Hom(F (A), F (B)), f 7→ F (f), are group morphisms.

An additive functor F : C −→ C ′ between abelian categories is exact
if it sends short exact sequences to short exact sequences. It is left
exact if, for any exact sequence 0 −→ A

f−→ B
g−→ C, the sequence

0 −→ F (A) F (f)−−→ F (B) F (g)−−→ F (C) is exact. It is right exact if, for any
exact sequence A f−→ B

g−→ C −→ 0, the sequence F (A) F (f)−−→ F (B) F (g)−−→
F (C) −→ 0 is exact.

Definition 11.11. Let F : C −→ C ′ be an additive functor between ad-
ditive categories. We define C(F ) : C(C) −→ C(C ′) by F (X ·, d·

X) =
(F (X ·), F (d·

X)). Then C(F ) is additive and compatible with homo-
topy. It induces an additive functor K(F ) : K(C) −→ K(C ′).

Definition 11.12. Let F : C −→ C ′ be a right exact functor between
two abelian categories. We assume that C has enough projectives. For
i ∈ Z we define a functor LiF : C −→ C ′ by LiF = H i ◦K(F ) ◦ respr,
where respr : C −→ Kpr(C) is given by Proposition 11.8.

As already remarked after Proposition 11.8 (see Remark 11.9) two
choices of respr give isomorphic functors. In particular, for any M ∈ C
and i ∈ Z, we have LiF (M) = H i(K(F )(P )), where P is any projective
resolution of M .

The right exactness of F ensures that
L0F (M) ≃ F (M), for all M ∈ Ob(C).

Lemma 11.13. Let C be an additive category and P,R ∈ C. The
natural morphisms i =

(
idP

0

)
: P −→ P⊕R and p = (0, idR) : P⊕R −→ R

give an exact sequence 0 −→ P −→ P ⊕ R −→ R −→ 0 (that is, i is a
monomorphism and it has a cokernel which is p).

Proposition 11.14. Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be a short exact
sequence in C. Let P = (P ·, d·

P ) ∈ C(C) together with ε : P 0 −→ X be
a projective resolution of X. Let R = (R·, d·

R) ∈ C(C) together with
γ : R0 −→ Z be a projective resolution of Z. We set Qk = P k⊕Rk. Then
we can find a differential d·

Q and η : Q0 −→ Y turning (Q·, d·
Q) into a

projective resolution of Y such that the natural morphisms ik : P k −→
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Qk, pk : Qk −→ Rk give a commutative diagram of resolutions:

· · · // P−2 d−2
P //

i−2
��

P−1 d−1
P //

i−1
��

P 0 ε //

i0
��

X

f

��
· · · // Q−2

d−2
Q //

p−2

��

Q−1
d−1

Q //

p−1

��

Q0 γ //

p0

��

Y

g

��
· · · // R−2

d−2
R

// R−1
d−1

R

// R0
η

// Z.

Proof. Since g is an epimorphism and R0 is projective, we can factorize
g through η′ : R0 −→ Y . Then γ = (f ◦ ε, η′) : Q0 = P 0 ⊕R0 −→ Y gives
the commutative squares. Moreover γ is an epimorphism: if a : Y −→M
is such that a ◦ γ = 0, then a ◦ f ◦ ε = 0, hence a ◦ f = 0 (because ε
is an epimorphism), hence a factorizes through g by a′ : Z −→ M ; we
then obtain a′ ◦ η = 0, hence a′ = 0 (since η is an epimorphism), hence
a = 0.

The snake lemma gives the exact sequence 0 −→ ker ε −→ ker γ −→
ker η −→ 0. We replace the initial exact sequence by this one and
P 0, Q0, R0 by P−1, Q−1, R−1. The same argument gives an epimor-
phism e−1 : Q−1 −→ ker γ making commutative squares. We let d−1

Q be
the composition of e−1 and the morphism ker γ −→ Q0.

Now we go on by induction. □

Theorem 11.15. Let F : C −→ C ′ be a right exact functor between
two abelian categories. We assume that C has enough projectives. Let
0 −→ X

f−→ Y
g−→ Z −→ 0 be a short exact sequence in C. Then there

exists a canonical long exact sequence in C ′

· · · −→ LnF (X) LnF (f)−−−−→ LnF (Y ) LnF (g)−−−−→ LnF (Z) δn

−→ Ln+1F (X)
Ln+1F (f)−−−−−→ Ln+1F (Y ) Ln+1F (g)−−−−−→ Ln+1F (Z) −→ · · · .

More precisely, if we have a commutative diagram of short exact se-
quences

0 // X
f //

u
��

Y
g //

v
��

Z //

w
��

0

0 // X ′ f ′
// Y ′ g′

// Z ′ // 0,
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then all squares LnF (Z) δn
//

LnF (w)
��

Ln+1F (X)
LnF (u)
��

LnF (Z ′) δ′n
// Ln+1F (X ′)

commute.

Proof. We use the result and the notations of Proposition 11.14. By
Lemma 11.13 the sequence of complexes 0 −→ P · −→ Q· −→ R· −→ 0
is exact. We apply the functor C(F ) to the sequence and obtain a
sequence in C(C ′): 0 −→ F (P ·) −→ F (Q·) −→ F (R·) −→ 0. Since F is
additive, we have F (Qi) ≃ F (P i)⊕ F (Ri) and the morphisms still are
the natural morphisms from/to a product/sum. Hence this sequence
in C(C ′) is also exact, by Lemma 11.13 again. Now the theorem follows
from Proposition 10.7. □

Actually we only used the additivity of F in the proof of the theorem.
The hypothesis that F is right exact is needed to make the connection
between F and L0F :

Lemma 11.16. With the hypothesis of Theorem 11.15 we have L0F ≃
F .

Proof. Let X ∈ C be given with a projective resolution P · together
with ε : P 0 −→ X such that · · · −→ P−1 −→ P 0 −→ X −→ 0 is exact.
The hypothesis says that F (P−1) −→ F (P 0) −→ F (X) −→ 0 is exact,
which means F (X) ≃ coker(F (d−1

P )). On the other hand H0(· · · −→
F (P−1) −→ F (P 0) −→ 0) ≃ coker(F (d−1

P )) by definition, which gives the
result. □

Definition 11.12, Proposition 11.8 and Theorem 11.15 have analogs
for left exact functors in the case where C has enough injectives. In
particular we can define Kir(C) to be the full subcategory of K(C)
formed by the complexes I = (I ·, d·

I) such that I i = 0 for i < 0,
H i(I) ≃ 0 for all i ̸= 0 and I i is injective for each i ≥ 0 (“ir” stands for
“injective resolution”). Then H0 : Kir(C) −→ C is essentially surjective
and fully faithful as in Proposition 11.8 and we can find a quasi-inverse
resir : C −→ Kir(C). If F : C −→ C ′ is a left exact functor, we define
RiF (M) = H i(K(F )(resir(M))). Since F is left exact, we can see that
R0F = F . We then have an analog of Theorem 11.15 by replacing all
Ln by Rn.

Example 11.17. Let G be a group and F = (−)G : G −Mod −→ Ab
the functor of coinvariants. We have seen that it is right exact. Let us
compute LiF (Z), where Z is the trivial representation, when G = Z/nZ
is a finite cyclic group.
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We first define the group ring of G, for any group G. Let Z[G] be the
free abelian group generated by the set G, which means Z[G] = Z(G),
or, Z[G] = {∑g∈G ngeg}, where {eg} is the canonical base (if there is
no ambiguity, we may even write g instead of eg) and the ng in the sum
are all 0 but a finite number of them. Then Z[G] is an abelian group for
the termwise sum and also a ring, where the multiplication is induced
by the relation egeh = egh. In other words (∑g∈G ngeg)(∑g∈G n

′
geg) =∑

g∈G(∑h∈G nhn
′
h−1g)eg.

Now Z[G] is also a G-module for the action g ·x = egx (it is called the
regular representation of G). We can see that, for any M ∈ G−Mod,
the map

HomG−Mod(Z[G],M) −→M u 7→ u(e1G
),

is an isomorphism of abelian groups. It follows easily that Z[G] is
projective.

Now we assume G = Z/nZ and define N = ∑
g eg ∈ Z[G] (the norm

element) and δ = e0 − e1. We see that egN = Neg = N for any g,
hence Nδ = δN = 0. We even have the exact sequence

· · · ·δ−→ Z[G] ·N−→ Z[G] ·δ−→ Z[G] ·N−→ Z[G] ·δ−→ Z[G] ε−→ Z −→ 0,
where ε(∑g∈G ngeg) = ∑

ng, and ·N , ·δ are the multiplication on the
right (which are morphisms of left modules).

Now (Z[G])G ≃ Z is the quotient of Z[G] by im(·δ). It follows that

Hi(G,Z) ≃ H−i
(
· · · δ̄−→ Z N̄−→ Z δ̄−→ Z N̄−→ Z δ̄−→ Z),

where δ̄ and N̄ are the maps induced by ·δ and ·N . We see that δ̄ = 0
and N̄ is the multiplication by n. Hence

Hi(G,Z) =


Z if i = 0,
Z/nZ if i = 1, 3, 5, . . . ,
0 if i = 2, 4, 6, . . . .

Remark 11.18. In Example 11.17 to see that Z[G] we can use the
more general fact that in the category of modules over a ring R, the
free module R(I) is projective, for any family I, and that G −Mod is
equivalent to Mod(Z[G]).

Indeed a structure of G-module on an abelian group A extends by
linearity as a structure of left module over Z[G], by setting (∑ngeg)x :=∑
ng(g · x), for x ∈ A. The converse is easy: a Z[G]-module structure

on A gives a G-module structure by g · x := egx.
Now, to see that R(I) is projective in Mod(R), we use

HomMod(R)(R(I),M) ≃M I ,
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for any M ∈ Mod(R).

Lemma 11.19. Let C be an abelian category. Let A be a (maybe infi-
nite) set.

Let Pα, α ∈ A, be projective objects. We assume that P = ⊕
α∈A Pα

exists. Then P is projective.
Let Iα, α ∈ A, be injective objects. We assume that I = ∏

α∈A Iα

exists. Then I is injective.

Proof. This follows from HomC(⊕α∈A Pα, X) = ∏
α∈A HomC(Pα, X) and

HomC(X,∏α∈A Iα) = ∏
α∈A HomC(X, Iα). □

Lemma 11.20. An abelian group is injective if and only if it is divisible
that is, for any r ̸= 0 ∈ Z and a ∈ A, there exists b ∈ A such that
a = rb.

Sketch of proof. We assume A is divisible and consider an inclusion
of abelian groups M ⊂ N and a morphism f : M −→ A. We choose
x ∈ N \M and prove that f can be extended to the subgroup M + ⟨x⟩
of N ; then we could conclude by Zorn Lemma (left to the reader). We
have the exact sequence 0 −→ M ∩ ⟨x⟩ −→ M ⊕ ⟨x⟩ −→ M + ⟨x⟩ −→ 0.
We have ⟨x⟩ ≃ Z/nZ (we assume n ̸= 0 – the other case is similar)
and M ∩ ⟨x⟩ ≃ Z/mZ for some m | n. Then y = n

m
x is a generator of

M ∩ ⟨x⟩.
By hypothesis there exists a ∈ A such that f(y) = n

m
a. We remark

that na = mf(y) = f(my) = f(0) = 0; hence we can define f ′ : M ⊕
⟨x⟩ −→ A, (z, kx) 7→ f(z) − ka. Then f ′|M∩⟨x⟩ = 0 and f ′ factorizes
through f ′′ : M + ⟨x⟩ −→ A which is the required extension of f . □

Lemma 11.21. The category Ab has enough projectives and enough
injectives.

Proof. (i) We know that Z is projective. For M ∈ Ab and x ∈ M
we define φx : Z −→ M , n 7→ n · x. Now the sum of all these maps
Z(M) −→ M , (nx)x∈M 7→

∑
nx · x is surjective (note that the sum is

finite). By Lemma 11.19 Z(M) is projective.
(ii) Let M ∈ Ab. For any x ̸= 0 ∈ M we can find a morphism
ψx : M −→ Q/Z such that ψx(x) ̸= 0. Indeed we first define ψx on the
subgroup ⟨x⟩ ⊂ M by ψx(nx) = [n/m], where m is the order of x, if
m ̸= ∞, and ψx(nx) = [n/2] if m = ∞; then we can extend ψx to M
since Q/Z is injective (by Lemma 11.20). Now we make the product
of these maps and define ψ : M −→ Q/ZM , y 7→ (ψx(y))x∈M . Then ψ is
injective and Q/ZM is injective. □
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12. Partial Exam

Exercise 12.1. Let C be an abelian category and let Mor(C) be the cat-
egory of morphisms in C: its objects are the morphisms of C, (X f−→ Y ),
and its morphisms are the commutative diagrams, HomMor(C)((X

f−→

Y ), (X ′ f ′
−→ Y ′)) = {(u, v);

X X ′

Y Y ′

u

f f ′

v

commutes}.

We admit that Mor(C) is abelian with sums, kernels, cokernels given
termwise (for example with the above notations ker(u, v) = (ker(u) f̄−→
ker(v)) where f̄ is induced by f).

We admit also that, if I ∈ C is injective, then (I idI−→ I) and (I −→ 0)
are injective in Mor(C).

(i) We define K : Mor(C) −→ C, (X u−→ Y ) 7→ ker(u). Prove that K is a
left exact functor. Give an example showing that it is not right exact.

(ii) In the case C = Vect(k), the category of vector spaces over some
field (so any object is injective), give a right injective resolution of a
general object (X u−→ Y ) and compute the derived functors RiK.

Exercise 12.2. Let k be a field. We recall the notation kZ , for a
topological space X and a closed subset Z ⊂ X: kZ is the sheaf defined
by kZ(U) = {f : Z∩U −→ k; f is locally constant}, for U ∈ Op(X). For
Z ′ ⊂ Z another closed subset, we have a natural morphism i : kZ −→ kZ′

given by the morphisms i(U) : kZ(U) −→ kZ′(U) such that i(U)(f) =
f |U∩Z′ .

(i) Let a < b < c < d ∈ R. Let I1, I2, J ⊂ R be the closed intervals I1 =
[a, c], I2 = [b, d], J = I1 ∩ I2 = [b, c]. We let i1 : kI1 −→ kJ , i2 : kI2 −→
kJ be the above natural morphisms. For α ∈ k, α ̸= 0, we define
uα : kI1 ⊕ kI2 −→ kJ by uα = (i1, αi2) (in other words uα(U)(f1, f2) =
f1|U∩J + αf2|U∩J).

• Prove that ker(uα) ≃ kI , where I = [a, d]. More precisely, let
j1 : kI −→ kI1 , j2 : kI −→ kI2 be the natural morphisms; prove that
v = (αj1,−j2) : kI −→ kI1 ⊕ kI2 induces kI

∼−→ ker(uα).

(ii) Let θ = π/4. On the circle S1 we consider the two arcs A+ =
]−θ, π + θ[ (the upper arc containing π/2) and A− = ]π − θ, θ[ (the
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lower arc containing −π/2).

A+

A−

π 0 B1 B2

C+

C−

Let F be a sheaf on S1. We denote by F |A+ the sheaf restricted to A+,
that is, F |A+(U) = F (U) for U ∈ Op(A+) (and similarly for F |A−).
We assume that
(12.1) F |A+ ≃ kA+ and F |A− ≃ kA− .

In particular Γ(A+;F ) ≃ Γ(A+; kA+) ≃ k and Γ(A−;F ) ≃ k. We also
have Fπ ≃ k, F0 ≃ k. Let s+ ̸= 0 ∈ Γ(A+;F ) and s− ̸= 0 ∈ Γ(A−;F ).
Since Fπ and F0 are of dimension 1, there exist cπ, c0 ̸= 0 ∈ k such that

(s−)π = cπ · (s+)π, (s−)0 = c0 · (s+)0.

• Prove that m(F ) = cπ/c0 is independent of the choice of s+, s−. We
call it the monodromy of F .
• Let G be another sheaf on S1 satisfying (12.1). We assume that there
exists an isomorphism f : F ∼−→ G. Prove that m(F ) = m(G).

Extra question
(iii) LetB1 = [θ,−θ] be the left arc (containing π) andB2 = [π+θ, π−θ]
be the right arc (containing 0), C+ = [θ, π − θ], C− = [π + θ,−θ]. Let
i1+ : kB1 −→ kC+ be the natural morphism and similarly i1−, i2+, i2−.
For α ̸= 0 ∈ k we define

Fα = ker(fα : kB1 ⊕ kB2 −→ kC+ ⊕ kC−)

where fα =
(
i1+ i2+
i1− αi2−

)
. We know by (i) that Fα satisfies (12.1).

What is the monodromy of Fα?



44 HOMOLOGICAL ALGEBRA AND SHEAF THEORY

13. Correction of the partial exam

Correction of Exercise 12.1. The zero object in Mor(C) is (0 −→ 0).
A short sequence in Mor(C), say (0 −→ 0) −→ (X f−→ Y ) (u,v)−−→ (X ′ f ′

−→
Y ′) (u′,v′)−−−→ (X ′′ f ′′

−→ Y ′′) −→ (0 −→ 0), is given by a commutative diagram;

0 X X ′ X ′′ 0

0 Y Y ′ Y ′′ 0

u

f

u′

f ′ f ′′

v v′

Since ker and coker in Mor(C) are computed “objectwise”, this short
sequence is exact if and only if both rows are exact.

(i) By Lemma 10.4 the above exact sequence induces an exact sequence
of kernels 0 −→ ker(f) −→ ker(f ′) −→ ker(f ′′). Hence the functor K,
(X f−→ Y ) 7→ ker(f), is left exact. The snake lemma even says that this
sequence goes on as · · · −→ ker(f ′′) −→ coker(f) −→ · · · . Hence to find
an example were the sequence of kernels is not right exact, we have to
try examples where f is not an epimorphism. The easiest case seems
to be

0 0 Y Y 0

0 Y Y 0 0
0

idY

idY 0
idY 0

which gives the sequence of kernels 0 −→ 0 ū−→ 0 ū′
−→ Y , where indeed ū′

is not an epimorphism (for Y ̸= 0).

(ii) We first find a monomorphism from (X f−→ Y ) to an injective (I0
u0−→

J0), compute the cokernel and go on by induction.
We know that (X idX−−→ X), (Y idY−−→ Y ), (X −→ 0), (Y −→ 0) are

injective. We have no obvious map Y −→ X, so the natural maps we

can consider are
X X

Y 0

idX

f 0

0

X Y

Y 0

f

f 0

0

X Y

Y Y

f

f idY

idY

The sum of the first and the third morphisms gives a monomorphism

X X ⊕ Y

Y Y

u

f (0,idY )

idY

where u =
(

idX

f

)
.
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The cokernel of this morphism is (Y −→ 0) which is already injective.
More precisely we have the exact sequence

0 X X ⊕ Y Y 0

0 Y Y 0 0

(idX
f )

f (0,idY )

(f,−idY )

idY

So the process stops here and our resolution is
X ⊕ Y Y

Y 0

(f,−idY )

(0,idY )

Applying the functor K to the resolution we find the complex C =
· · · −→ 0 −→ X

f−→ Y −→ 0 −→ · · · , with X in degree 0. The cohomology
of this complex is H0(C) = ker(f), H1(C) = coker(f) and 0 in degree
̸= 0, 1. In other words, R0K = K, R1K = coker, RiK = 0, i ̸= 0, 1.

Correction of Exercise 12.2. (i) We consider the short sequence

0 −→ kI

(αj1
−j2)−−−→ kI1 ⊕ kI2

(i1,αi2)−−−−→ kJ

We set uα = (i1, αi2), v =
(

αj1
−j2

)
. A sequence of sheaves is exact if and

only if the sequences of stalks are exact at each point x. There are four
possibilities

• x ̸∈ I: the sequence of stalks is trivial,
• x ∈ I1 \ J : we find the sequence of stalks 0 −→ k αid−−→ k −→ 0

which is exact,
• x ∈ I2 \ J : same argument,

• x ∈ J : we find the sequence of stalks 0 −→ k
(αid

−id)−−−→ k2 (id,αid)−−−−→
k −→ 0 which is exact.

Hence the sequence of sheaves is exact, that is, kI = ker(uα).

(ii-a) We consider two other sections t+ ̸= 0 ∈ Γ(A+;F ) and t− ̸= 0 ∈
Γ(A−;F ) and we define d0, dπ by the relations between germs:

(t−)π = dπ · (t+)π, (t−)0 = d0 · (t+)0,

Since Γ(A+;F ) ≃ k and s+, t+ ̸= 0, there exists a+ ̸= 0 ∈ k such
that t+ = a+s+. In the same way there exists a− ̸= 0 ∈ k such that
t− = a−s−. We deduce

a−(s−)π = dπa+ · (s+)π, a−(s−)0 = d0a+ · (s+)0.
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It follows that cπ = (a+/a−)dπ and c0 = (a+/a−)d0 and then that
cπ/c0 = dπ/d0, as required.
(ii-b) We choose two sections s+ ̸= 0 ∈ Γ(A+;F ) and s− ̸= 0 ∈
Γ(A−;F ) as in the definition of m(F ) and take their images by f :
u+ = (f(A+))(s+) ∈ Γ(A+;G), u− = (f(A−))(s−) ∈ Γ(A−;G)

Taking the germs, we have (u+)π = fπ((s+)π) and (u−)π = fπ((s−)π).
Applying fπ to the formula (s−)π = cπ · (s+)π, we then find (u−)π =
cπ(u+)π. In the same way (u−)0 = c0(u+)0. Hence m(G) = cπ/c0 =
m(F ).

(iii) We have
F (A+) = ker

(
fα(A+) : kB1(A+)⊕ kB2(A+) −→ kC+(A+)⊕ kC−(A+)

)
.

Now kBi
(A+) = kC+(A+) = k, kC−(A+) = 0 and fα(A+) becomes

fα(A+) = (id, id) : k2 −→ k. In particular (1,−1) belongs to ker(fα(A+))
and defines a section s+ ∈ F (A+).

In the same way fα(A−) is identified with fα(A−) = (id, αid) : k2 −→
k. In particular (α,−1) defines a section s− ∈ F (A−).

The sheaf Fα is defined by the exact sequence 0 −→ Fα −→ kB1 ⊕
kB2 −→ kC+ ⊕ kC− and taking the germs at π gives the exact sequence
0 −→ (Fα)π −→ (kB1)π −→ 0. Hence we have a natural identification
(Fα)π

∼−→ (kB1)π = k. Using this identification we have (s+)π = 1 and
(s−)π = α. Hence cπ = α.

In the same way we have an identification (Fα)0 ∼−→ (kB2)0 = k
which gives (s+)0 = 1 and (s−)0 = 1. Hence c0 = 1.

Finally m(F ) = α.

Locally constant sheaves. Sheaves satisfying (12.1) are called “lo-
cally constant”. In general a locally constant sheaf with stalk M on a
space X is a sheaf F such that any point x ∈ X has a neighborhood U
such that F |U ≃MU . Such sheaves are classified by the representations
of π1(X) into M (group morphisms π1(X) −→ Aut(M)). The represen-
tation corresponding to such a sheaf F is called the monodromy of
F .

In our case M = k and X = S1, Aut(k) = k× and π1(S1) = Z. A
representation of Z is the determined by the image of 1. Here it is a
scalar α ∈ k×. The Fα defined above is the sheaf with monodromy α.
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14. More general resolutions

Let C, C ′ be abelian categories. We assume that C has enough injec-
tives. For a given left exact functor F : C −→ C ′ we may compute RF
with more general resolutions than injective resolutions.
Definition 14.1. An object X ∈ C such that RiF (X) ≃ 0 for all i ≥ 1
is called F -acyclic.
Lemma 14.2. Let 0 −→ X0 −→ X1 −→ · · · −→ Xn −→ 0 be an exact
sequence in C. We assume that X0, . . . , Xn−1 are F -acyclic. Then Xn

is F -acyclic.
Proof. We proceed by induction on n. The case n = 2 is true by the
long exact sequence · · · −→ RiF (X1) −→ RiF (X2) −→ Ri+1F (X0) −→ · · · .

For n > 2 we split our sequence in two exact sequences
0 −→ X0 −→ X1 −→ · · · −→ Xn−2 −→ Y n−1 −→ 0,

0 −→ Y n−1 −→ Xn−1 −→ Xn −→ 0,
where Y n−1 = im(Xn−2 −→ Xn−1) ≃ ker(Xn−1 −→ Xn). By induction
Y n−1 is F -acyclic. Hence Xn is F -acyclic by the case n = 2. □

Lemma 14.3. Let 0 −→ X0 −→ X1 −→ · · · −→ Xn −→ 0 be an exact
sequence in C (here n may be ∞). We assume that X0, . . . , Xn are F -
acyclic. Then the sequence 0 −→ F (X0) −→ F (X1) −→ · · · −→ F (Xn) −→ 0
is exact.
Proof. We proceed as in the proof of the previous lemma. The case
n = 2 is true since R1F (X0) ≃ 0. In general we split the sequence as
in the previous lemma. Then Y n−1 is F -acyclic and the induction gives
the exact sequences

0 −→ F (X0) −→ F (X1) −→ · · · −→ F (Xn−2) −→ F (Y n−1) −→ 0,
0 −→ F (Y n−1) −→ F (Xn−1) −→ F (Xn) −→ 0,

which glue into the exact sequence of the current lemma. □

Proposition 14.4. Let X ∈ Ob(C) and let J ∈ C+(J ) be a resolution
of X by F -acyclic objects. Then we have an isomorphism RiF (X) ≃
H i C(F )(J).
Proof. (i) As in Proposition 11.3, we can find an injective resolution
I ∈ C+(C) of X and a morphism u : J −→ I in C(C) which lifts idX :

0 // X
ε0
// J0 d0

J //

u0
��

J1 //

u1
��

J2 //

u2
��

· · ·

0 // X
ε1
// I0 d0

I // I1 // I2 // · · ·
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and such that the uk are monomorphisms. Indeed we first choose a
monomorphism u0 with I0 injective and set ε1 = u0 ◦ ε0. This gives
the first commutative square. We define p0 : I0 −→ coker(ε1) and v0 =
p0 ◦ u0. We set J ′1 = coker

(
−v0

d0
J

)
so that we have the commutative

diagram

J0 d0
J //

v0

��

J1

w1

��
coker(ε1) i0

// J ′1

where i0 is a monomorphism (check!). We choose a monomorphism
j1 : J ′1 −→ I1 with I1 injective and set d0

I = j1 ◦ i0 ◦ p0, u1 = j1 ◦ w1.
Since j1 ◦ i0 is a monomorphism, we have ker(d0

I) = ker(p0) = im(ε1).
This gives the second commutative square. We go on by induction.

(ii) We set K = coker(u). Then 0 −→ J −→ I −→ K −→ 0 is a short exact
sequence and Proposition 10.7 implies that H iK ≃ 0 for all i ∈ Z.
Hence, viewing K as a long sequence in C, it is an exact long sequence
(we say that K is an acyclic complex).

By Lemma 14.2 with n = 2, the Ki’s are F -acyclic. By Lemma 14.3
we deduce that the long sequence F (K ·) is exact. In other words
H i(C(F )(K)) ≃ 0 for all i ∈ Z.

By Lemma 14.3 again, with n = 2, the sequences 0 −→ F (J i) −→
F (I i) −→ F (Ki) −→ 0 are exact. Now the result follows from Proposi-
tion 10.7. □

Definition 14.5. A family of objects J ⊂ Ob(C) is called F -injective
if

(i) for any X ∈ Ob(C) there exist J ∈ J and a monomorphism
0 −→ X −→ J ,

(ii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C, if X ′ ∈ J
and X ∈ J , then X ′′ ∈ J ,

(iii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with
X ′, X,X ′′ ∈ J , the sequence 0 −→ F (X ′) −→ F (X) −→ F (X ′′) −→
0 is exact.

Lemma 14.6. The objects in J are F -acyclic.

Proof. We choose an injective object I ∈ C and a monomorphism
a : J −→ I. Then we choose J ′ ∈ J and a monomorphism b : I −→ J ′.
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We set X = coker(a) and J ′′ = coker(b). We have the exact sequences
0 // J // I //

��

X //

��

0

0 // J // J ′ // J ′′ // 0
and the long cohomology exact sequences

0 // F (J) // F (I) //

��

F (X) //

��

R1F (J) // R1F (I)

��
0 // F (J) // F (J ′) // F (J ′′) u // R1F (J) v // R1F (J ′),

RiF (X) //

��

Ri+1F (J) // Ri+1F (I)

��
RiF (J ′′) // Ri+1F (J) vi+1

// Ri+1F (J ′),
Now we prove the result by induction on i.

We first consider i = 1. By (ii) of Definition 14.5 we have J ′′ ∈
J and then (iii) implies that the morphism u is zero. Hence v is a
monomorphism. Since v factorizes through R1F (I), which is zero since
I is injective, we deduce that R1F (J) is zero, as claimed.

Assuming the result true for i, we have RiF (J ′′) ≃ 0 since J ′′ ∈ J .
Hence the morphism vi+1 is a monomorphism and we conclude as in
the case i = 1 that Ri+1F (J) ≃ 0. □

We can modify the proof of Prop. 11.3 to obtain:

Proposition 14.7. If J is an F -injective family, then any complex
X ∈ C+(C) has a resolution by objects of J , that is, there exist a
complex of objects in J , J ∈ C+(J ), and a morphism u : X −→ J in
C+(C) such that u is a qis.
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15. Injectives sheaves

Let X be a topological space and Sh(X) the category of sheaves of
abelian groups. We have seen in Lemma 11.21 that Ab has enough
injectives.

For an abelian group A and x ∈ X we have the “skyscrapper sheaf”
A{x} defined by A{x}(U) = A if x ∈ U and A{x}(U) = 0 else, with the
natural restriction maps. For F ∈ Sh(X) we have a natural morphism
px : F −→ (Fx){x} defined by px(U)(s) = sx.

Lemma 15.1. For any F ∈ Sh(X), we have HomSh(X)(F,A{x}) ≃
HomAb(Fx, A).

Lemma 15.2. If A is injective in Ab, then A{x} is injective in Sh(X).

Lemma 15.3. The categories Psh(X) and Sh(X) admit arbitrary
products. Moreover, for a family of presheaves Pi, i ∈ I, the prod-
uct is given by (∏i Pi)(U) = ∏

i Pi(U). If the Pi are sheaves, then ∏i Pi

is also a sheaf and is the product of the Pi’s in Sh(X).

Lemma 15.4. Let Fi, i ∈ I, be a family of injective sheaves. Then∏
i Fi is injective.

Lemma 15.5. Let F ∈ Sh(X). We define a morphism i = ∏
x∈X px : F −→∏

x∈X(Fx){x} by i(U)(s) = ∏
sx. Then i is a monomorphism.

Proposition 15.6. The category Sh(X) has enough injectives.

Since Sh(X) has enough injectives we can derive all left exact func-
tors. Important examples are the following functors, for a given F ∈
Sh(X) and a given U ∈ Op(X),

Hom(F,−) : Sh(X) −→ Ab Γ(U ;−) : Sh(X) −→ Ab
G 7→ Hom(F,G) F 7→ Γ(U ;F )

There are special notations for their derived functors:
Exti(F,G) = RiHom(F,G),(15.1)
H i(U ;F ) = RiΓ(U ;F ).(15.2)

The functor Hom(F,−) is defined for any abelian category and the
notation Exti(−,−) is also used for any abelian category.
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16. Adjoint functors

Let C, C ′ be categories and let R : C ′ −→ C, L : C −→ C ′ be two
functors. Roughly speaking, we say that L is left adjoint to R if
HomC(X,R(Y )) ≃ HomC′(L(X), Y ) for all X ∈ C, Y ∈ C ′. Of course
we want these isomorphisms to be functorial in X and Y . For this we
remark that HomC(·, ·) is a functor from Cop × C to Set. In the same
way HomC(·, R(·)) and HomC′(L(·), ·) are functors from Cop×C ′ to Set.
Now we can give a formal definition:

Definition 16.1. Let C, C ′ be categories and let R : C ′ −→ C, L : C −→ C ′

be two functors. We say that L is left adjoint to R (or R right adjoint
to L, or (L,R) is an adjoint pair) if there exists an isomorphism of
functors from Cop × C ′ to Set:

(16.1) HomC(·, R(·)) ≃ HomC′(L(·), ·).

It is called the adjunction morphism.

Lemma 16.2. let F : C −→ C ′ be a functor. If F has a right (or left)
adjoint, then this adjoint is unique, up to a canonical isomorphism.

Proof. Let G,G′ be two right adjoints. For any X ∈ C, Y ∈ C ′ we
have HomC(X,G(Y )) ≃ HomC′(F (X), Y ) ≃ HomC(X,G′(Y )). Setting
X = G(Y ) the image of idG(Y ) gives θ(Y ) : G(Y ) −→ G′(Y ). Using the
functoriality we see that θ is a morphism of functors. Switching G,G′

gives θ′ : G′ −→ G. By construction the composition θ′ ◦ θ gives the
identity morphism HomC(X,G(Y )) −→ HomC(X,G(Y )), ∀X, Y , and it
follows that θ′ ◦ θ = id. □

SettingX = R(Y ) in the equality HomC(X,R(Y )) ≃ HomC′(L(X), Y )
the image of idR(Y ) gives η(Y ) : L ◦ R(Y ) −→ Y . As in the proof of
Lemma 16.2 we can see η is a morphism of functors. Setting Y = L(X)
gives a morphism in the other direction. So we obtain

(16.2) ε : idC −→ R ◦ L, η : L ◦R −→ idC′

and we can check that the bijection (16.1) is given as the compositions

HomC(L(X), L ◦R(Y ))
η(Y )◦−

**
HomC(X,R(Y ))

L(−)
44

HomC′(L(X), Y )

R(−)tt
HomC′(R ◦ L(X), R(Y ))

−◦ε(X)

jj
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Runing around this diagram gives the identity morphisms at left and
right hand sides. Setting Y = L(X) or X = R(Y ) we deduce that the
following compositions are the identity morphisms:

(η ◦ L) ◦ (L ◦ ε) = idL : L −→ L ◦R ◦ L −→ L,(16.3)
(R ◦ η) ◦ (ε ◦R) = idR : R −→ R ◦ L ◦R −→ R.(16.4)

We can prove (see for example [2] Prop. 1.5.4):

Lemma 16.3. If L,R are functors and ε, η morphisms of functors
satisfying (16.3), (16.4), then (L,R) is an adjoint pair.

Example 16.4. Let for : Ab −→ Set be the forgetful functor. Then
for has a left adjoint, the “free abelian group” functor I 7→ Z(I), that
is, HomSet(I, for(A)) ≃ HomAb(Z(I), A).

In the same way we can define the functors “free k-module” for a
ring k, “free group”, “free associative k-algebra”,. . .

Example 16.5. Let X be a topological space. The forgetful functor
for : Sh(X) −→ Psh(X) and the “associated sheaf functor” Psh(X) −→
Sh(X), P 7→ P a are adjoint: we have the functorial isomorphism

HomPsh(X)(P, for(F )) ≃ HomSh(X)(P a, F )
for P ∈ Psh(X), F ∈ Sh(X).

Exercise 16.6. Let C, C ′ be abelian categories and let R : C ′ −→ C,
L : C −→ C ′ be additive functors such that R is right adjoint to L.
Prove that R is left exact and L is right exact.
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17. Direct and inverse images of sheaves

Let f : X −→ Y be a continuous map between topological spaces. Let
k be a ring. We define the direct image functor f∗ : Sh(X) −→ Sh(Y )
and the inverse image functor f−1 : Sh(Y ) −→ Sh(X). They form
an adjoint pair (f−1, f∗). When X and Y are Hausdorff and locally
compact we also define the proper direct image functor f! : Sh(X) −→
Sh(Y ).
Definition 17.1. For F ∈ Psh(X) we define f∗F ∈ Psh(Y ) by its
sections (f∗F )(V ) = F (f−1(V )) for any open subset V ⊂ Y , with the
restriction maps naturally given by those of F . If F ∈ Sh(X) we can
check that f∗F ∈ Sh(Y ).

If u : F −→ G is a morphism in Sh(X), we define f∗u : f∗F −→ f∗G by
(f∗u)(V ) = u(f−1(V )). We obtain functors f∗ : Psh(X) −→ Psh(Y ),
f∗ : Sh(X) −→ Sh(Y ).
Lemma 17.2. The functor f∗ : Psh(X) −→ Psh(Y ) is exact and the
functor f∗ : Sh(X) −→ Sh(Y ) is left exact.
Definition 17.3. For G ∈ Psh(Y ) we define a presheaf prf−1G ∈
Psh(X) by (prf−1G)(U) = lim−→V ⊃f(U) G(V ), where V runs over the
open neighborhoods of f(U) in Y . The restriction maps are naturally
induced by those of G. A morphism u : F −→ G induces morphisms on
the inductive limits, (prf−1u)(U) : (prf−1F )(U) −→ (prf−1G)(U), for all
U ∈ Op(X), which are compatible and define prf−1u : prf−1F −→ prf−1G.
This gives a functor prf−1 : Psh(X) −→ Psh(Y ).

We set f−1G = (prf−1G)a and obtain a functor f−1 : Sh(Y ) −→
Sh(X).

When f : X −→ Y is an embedding of topological spaces (that is, f is
an inclusion and the topology of X is the induced topology) we often
write
(17.1) G|X := f−1G.

If f is the inclusion of an open set, we have (G|X)(U) = G(U), for all
U ∈ Op(X).
Exercise 17.4. Let X be a Hausdorff topological space and Z ⊂ X a
compact subset. Then, for any F ∈ Sh(X) and V ∈ Op(Z), we have
(F |Z)(V ) ≃ lim−→U⊃V

F (U), where U runs over the open neighborhoods
of V in X.
Lemma 17.5. Let f : X −→ Y be a continuous map and let x ∈ Y .
For any P ∈ Psh(Y ) or F ∈ Sh(Y ), we have natural isomorphisms
(prf−1P )x ≃ Pf(x), (f−1F )x ≃ Ff(x).
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Since the exactness of a sequence of sheaves can be checked in the
stalks we deduce:

Lemma 17.6. For any continuous map f : X −→ Y , the functor f−1 is
exact.

In the situation of Definitions 17.1 and 17.3 we define two morphisms
of functors
(17.2) ε : idPsh(Y ) −→ f∗ ◦ prf−1, η : prf−1 ◦ f∗ −→ idPsh(X)

as follows. For G ∈ Psh(Y ) and V ∈ Op(Y ) we have
f∗ ◦ prf−1(G)(V ) = (prf−1G)(f−1V ) = lim−→

W

G(W ),

where W ⊂ Y runs over the open subsets such that f(f−1(V )) ⊂ W .
We remark that V belongs to this family of W ’s. Hence we have a
natural morphism G(V ) −→ f∗ ◦ prf−1(G)(V ). It is compatible with the
restrictions maps for V ′ ⊂ V and gives ε(G) : G −→ f∗ ◦ prf−1(G). For
any F ∈ Psh(X) and U ∈ Op(X) we have

prf−1 ◦ f∗(F )(U) = lim−→
W

F (f−1(W )),

where W ⊂ X runs over the open subsets such that f(U) ⊂ W , that
is, U ⊂ f−1(W ). We thus have a natural morphism prf−1 ◦f∗(F )(U) −→
F (U), which defines our η.

We can check the hypothesis of Lemma 16.3 and deduce that (prf−1, f∗)
is an adjoint pair. Using Example 16.5 we obtain:

Proposition 17.7. Let f : X −→ Y be a continuous map between topo-
logical spaces. The pairs of functors (prf−1, f∗) and (f−1, f∗) are adjoint
pairs.

Definition 17.8. Let F ∈ Sh(X), U ∈ Op(X) and s ∈ F (U). The
support of s is the closed subset supp(s) of U defined by

U \ supp(s) =
⋃

V ∈Op(U), s|V ≃0
V.

Alternatively U \ supp(s) is the biggest open subset V of U such that
s|V ≃ 0.

A topological space X is locally compact if, for any x ∈ X and any
neighborhood U of x, there exists a compact neighborhood of x con-
tained in U . Now we assume X, Y are Hausdorff and locally compact.
Then a map f : X −→ Y is proper if the inverse image of any compact
subset of Y is compact.
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Definition 17.9. Let f : X −→ Y be a continuous map of Hausdorff
and locally compact spaces. For F ∈ Sh(X) we define a subsheaf
f!F ∈ Sh(Y ) of f∗F by

(f!F )(V ) = {s ∈ (f−1(V )); f |supp s : supp(s) −→ V is proper}

for any open subset V ⊂ Y . If u : F −→ G is a morphism in Sh(X),
the morphism f∗u : f∗F −→ f∗G sends f!F to f!G. We obtain a functor
f! : Sh(X) −→ Sh(Y ).

Remark 17.10. If the map f itself is proper, then we have f! ∼−→ f∗.

Definition 17.11. Let X be a Hausdorff and locally compact topo-
logical space. For F ∈ Sh(X) and U ∈ Op(X) we set

Γc(U ;F ) = {s ∈ F (V ); supp(s) is compact.}

Proposition 17.12. Let f : X −→ Y be as in Definition 17.9. For any
F ∈ Sh(X) and y ∈ Y we have

(f!F )y ≃ Γc(f−1(y);F |f−1(y)).

Remark 17.13. The functors of global sections Γ(X;−) and global
sections with compact support Γc(X;−) are particular cases of f∗, f!.
Indeed we can identify Sh(pt) with Ab, and, for a : X −→ pt, the map
to a point, we have

a∗(F ) ≃ Γ(X;F ), a!(F ) ≃ Γc(X;F ).

We can recover the sheaf kW of Exercise 8.4.

Notation 17.14. Let X be a locally compact Hausdorff space. Let
j : W −→ X be the inclusion of a locally closed subset (we can write
W = V ∩Z, with V open and Z closed). Let A be an abelian group and
let AW ∈ Sh(W ) be the constant sheaf on W defined in Example 3.11.
We define

AX,W = j!AW .

When it is clear that the ambient space is X, we simply write AW

instead of AX,W .

Exercise 17.15. Check that AX,W is indeed the sheaf of Exercise 8.4
(for A = k).

Proposition 17.12 gives

(AW )x ≃

A if x ∈ W,
0 if x ̸∈ W.



56 HOMOLOGICAL ALGEBRA AND SHEAF THEORY

Lemma 17.16. Let U ⊂ X be an open subset and F ∈ Sh(X). Let
(1U ∈ ZU(U) be the constant function 1. The morphism

Hom(ZU , F ) −→ Γ(U ;F ), φ 7→ ((φ(U))(U))(1U)
is an isomorphism.
Proof. Exercise (try to define an inverse.) □

The morphism of the lemma is functorial in F and we have in fact
an isomorphism of functors

Hom(ZU ,−) −→ Γ(U ;−).
A useful consequence of this lemma is the isomorphism of derived func-
tors (recall the notations (15.1) and (15.2)):
(17.3) H i(U ;F ) ≃ Exti(ZU , F ).
Lemma 17.17. Let U1, U2 ∈ Op(X) and set U12 = U1 ∩ U2 and U =
U1 ∪ U2. We have an exact sequence

0 −→ ZU12
u−→ ZU1 ⊕ ZU2

v−→ ZU −→ 0,
where u =

(
u1
u2

)
, v = (v1,−v2) and uk : ZU12 −→ ZUk

, vk : ZUk
−→ ZU are

the natural morphisms.
Proof. Same proof as Exercise 12.2 (see §13). □

Lemma 17.18 (Mayer-Vietoris). We use the notations of Lemma 17.17.
Let F ∈ Sh(X). Then we have a long exact sequence

· · · −→ H i(U ;F ) −→ H i(U1;F )⊕H i(U2;F ) −→ H i(U12;F )
−→ H i+1(U ;F ) −→ · · ·

Proof. By (17.3) we can replace H i(U ;F ) by Exti(ZU , F ). To compute
these functors we replace F by an injective resolution, say (I∗, d∗). We
apply the functors Hom(−, Ik) to the sequence of Lemma 17.17 and we
find a sequence of complexes:

0 Hom(ZU , I
k)

2
⊕
i=1

Hom(ZUi
, Ik) Hom(ZU12 , I

k) 0

0 Hom(ZU , I
k+1)

2
⊕
i=1

Hom(ZUi
, Ik+1) Hom(ZU12 , I

k+1) 0
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The rows are exact because each Ik is injective. Hence we have a
short exact sequence of complexes. By (17.3) the cohomology of the
columns give H∗(U ;F ), ⊕iH

∗(Ui;F ),. . . Now the lemma follows from
Proposition 10.7. □

Lemma 17.19. Let f : X −→ Y , g : Y −→ Z be continuous map. We
have (g◦f)∗ ≃ g∗◦f∗ and (g◦f)−1 ≃ f−1◦g−1. If X, Y, Z are Hausdorff
locally compact we also have (g ◦ f)! ≃ g! ◦ f!.

Proof. The first isomorphism follows quickly from the definiition of
(−)∗. The second one follows from the first by uniqueness of adjoint
functor. The third one follows from the first by checking that the
supports are proper. □

Lemma 17.20. Let f : X −→ Y be a continuous map and aY : Y −→ pt
be the map to a point. Then for any group M ∈ Ab we have MY ≃
a−1

Y (M) (using Sh(pt) ≃ Ab) and MX ≃ f−1MY .

Proof. We see that pra−1
Y (M) is the constant presheaf PMY and we

deduce MY ≃ a−1
Y (M). Then f−1MY ≃ f−1a−1

Y (M) ≃ a−1
X (M) ≃ MX

by Lemma 17.19. □
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18. Flabby and soft sheaves

Let X be a topological space.

Definition 18.1. A sheaf F ∈ Sh(X) is flabby if, for any open subset
U ⊂ X, the restriction morphism F (X) −→ F (U) is surjective.

Let f : X −→ Y be a continuous map.

Proposition 18.2 (see [1], Section 2.4). The family of flabby sheaves
is f∗-injective and f!-injective.

We apply this proposition to the computation of H i(R; k[a,b]) for a
closed interval [a, b] of R.

We recall the morphism (16.2) ε : k[a,b] −→ i∗i
−1k[a,b], where i : Rdisc −→

R is the map from R with the discrete topology to R. We can iden-
tify i∗i

−1k[a,b] with the sheaf F[a,b] of functions on [a, b] defined by
F[a,b](U) = {f : U ∩ [a, b] −→ R}. This sheaf is flabby since we can
extend a function defined on U ∩ [a, b] arbitrarily to a function defined
on [a, b]. We define G = coker(ε) and we have the short exact sequence:
(18.1) 0 −→ k[a,b] −→ F[a,b] −→ G −→ 0.

Lemma 18.3. For any open subset U ⊂ R the sequence (18.1) gives
the exact sequence of sections:

(18.2) 0 −→ Γ(U ; k[a,b])
a(U)−−→ Γ(U ;F[a,b])

b(U)−−→ Γ(U ;G) −→ 0.

Proof. (i) Writing U as a disjoint union of intervals, U = ⊔
k∈Z Ik, we

have Γ(U ;F ) ≃ ∏
k∈Z Γ(Ik;F ). Since a product of exact sequences of

abelian groups is exact, we can assume that U is an interval. We have
to check that the last morphism in (18.2) is surjective. Let s ∈ Γ(U ;G)
be given.
(ii) Let us first prove that for any compact subinterval K = [c, d] ⊂ U
there exists a neighborhood V of K and s′ ∈ Γ(V ;F[a,b]) such that
b(V )(s′) = s|V .

For any x ∈ U there exist a neighborhood Wx of x and s′(x) ∈
Γ(Wx;F[a,b]) such that b(Wx)(s′(x)) = s|Wx . We can assume that the
Wx are intervals and we choose a finite number of them to cover K.
We denote them W1, . . . ,WN and order them so that Vi :=W1∪· · ·∪Wi

is connected, for all i. We also write s′
i ∈ Γ(Wi;F[a,b]) instead of s′(x).

Let us prove by induction on i that there exists s′′
i ∈ Γ(Vi;F[a,b]) such

that b(Vi)(s′′
i ) = s|Vi

. For i = 1 we have s′′
1 = s′

1. Assuming s′′
i is

defined we have
b(Vi ∩Wi+1)(s′′

i |Vi∩Wi+1) = s|Vi∩Wi+1 = b(Vi ∩Wi+1)(s′
i+1|Vi∩Wi+1).
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Hence there exists ti ∈ Γ(Vi ∩Wi+1; k[a,b]) such that
s′′

i |Vi∩Wi+1 − s′
i+1|Vi∩Wi+1 = a(Vi ∩Wi+1)(ti).

We can extend ti to a section t′i ∈ Γ(Wi+1; k[a,b]) because Vi ∩ Wi+1
is connected. We set s̃i+1 = s′

i+1 − a(Wi+1)(t′i). Then we see that
s′′

i |Vi∩Wi+1 = s̃i|Vi∩Wi+1 and we can glue these sections in a section s′′
i+1

such that b(Vi+1)(s′′
i+1) = s|Vi+1 .

(iii) We remark that the section s′ ∈ Γ(V ;F[a,b]) found in (ii) is unique
up to the addition of a section of Γ(V ; k[a,b]), that is, up to the addition
of a constant function. Hence, for a given x0 ∈ U with x0 ∈ K, there
exists a unique s′ ∈ Γ(V ;F[a,b]) such that b(V )(s′) = s|V and s′(x0) = 0.

Now we consider an increasing sequence Ki ⊂ Ki+1 ⊂ U , i ∈ N,
of compact intervals whose union is U . For each i we have a unique
s′

i ∈ Γ(Vi;F[a,b]) such that b(Vi)(s′
i) = s|Vi

and s′
i(x0) = 0, where Vi is

some neighborhood of Ki. By unicity we have s′
i+1|Vi

= s′
i. Hence we

can glue the s′
i in a section s′ ∈ Γ(U ;F[a,b]) such that b(U)(s′) = s. □

Lemma 18.4. The sheaf G of (18.1) is flabby.

Proof. Let U ⊂ R and s ∈ G(U) be given. By Lemma 18.3 there exists
s′ ∈ F[a,b](U) such that b(U)(s′) = s. Since F[a,b] is flabby, there exists
t′ ∈ F[a,b](R) such that t′|U = s′. Then t = b(R)(t′) satisfies t|U = s. □

Hence (18.1) gives a flabby resolution of k[a,b]. We deduce that for
any open subset U of R

H i(U ; k[a,b]) ≃ H i(0 −→ Γ(U ;F[a,b])
b(U)−−→ Γ(U ;G) −→ 0).

By Lemma 18.3 the morphism b(U) is surjective and we obtain that
the cohomology of k[a,b] is concentrated in degree 0:

Proposition 18.5. Let [a, b] be a closed interval in R. For any open
interval U of R such that U ∩ [a, b] ̸= ∅, we have

H0(U ; k[a,b]) ≃ k and H i(U ; k[a,b]) ≃ 0 for i ̸= 0.

Now we assume X is Hausdorff and locally compact.

Definition 18.6. A sheaf F ∈ Sh(X) is c-soft if, for any compact
subset C ⊂ X, the restriction morphism F (X) −→ F (C) is surjective,
where F (C) := lim−→C⊂U

F (U), U running over the open neighborhoods
of C.

We remark that a flabby sheaf is c-soft.
An important example is the case where X is a C∞ manifold and

F = C∞
X is the sheaf of C∞ functions on X. More generally any sheaf
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of modules over C∞
X is c-soft, in particular the sheaf of i-forms Ωi

X is
c-soft.

Let f : X −→ Y be a continuous map, X, Y Hausdorff and locally
compact.

Proposition 18.7 (see [1], Section 2.5). The family of c-soft sheaves
is f∗-injective and f!-injective.

Corollary 18.8. Let X be a C∞ manifold. Then H i(X; RX) ≃ H i
dR(X),

where H i
dR(X) is the de Rham cohomology of X.

Proof. By the Poincaré lemma the de Rham complex 0 −→ Ω0
X −→ Ω1

X −→
· · · −→ Ωn

X −→ 0, n = dimX, is a c-soft resolution of RX . The result
follows. □
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19. Internal Hom and tensor product

Let X be a topological space.

Definition 19.1. For F,G ∈ Sh(X) we define an “internal Hom sheaf”
Hom(F,G) ∈ Sh(X) as follows. For U ∈ Op(X) we set

Hom(F,G)(U) = HomSh(U)(F |U , G|U)
where F |U is defined in (17.1) (the restriction to an open set is very
simple: (F |U)(V ) = F (V ), for V ∈ Op(U)). For U ′ ⊂ U we have
(F |U)|U ′ = F |U ′ and we deduce restriction maps Hom(F,G)(U) −→
Hom(F,G)(U ′). We can check that they turnHom(F,G) into a presheaf
and then (exercise!) that Hom(F,G) is in fact a sheaf.

By definition we have Γ(X;Hom(F,G)) = Hom(F,G).

Definition 19.2. For F,G ∈ Sh(X) we define a presheaf F pr⊗ G by
(F pr⊗ G)(U) = F (U) ⊗Z G(U). The restriction maps of F,G give
restriction maps for F pr⊗G. We set F ⊗G = (F pr⊗G)a.

More generally, if we work with sheaves of R-modules for some com-
mutative ring R, we define F ⊗R G in the same way, starting with
F (U)⊗R G(U) instead of F (U)⊗Z G(U).

We recal the adjunction for R-modules, for a commutative ring R
and M,N,P ∈ Mod(R),

HomR(M ⊗R N,P ) ≃ HomR(M,HomR(N,P )).
We can deduce the similar fact for sheaves:

Lemma 19.3. For a given G ∈ Sh(X,R) (the category of sheaves of
R-modules), − ⊗ G is left adjoint to Hom(G,−). Explicitly, for any
F,G,H ∈ Sh(X,R):

HomSh(X,R)(F ⊗R G,H) ≃ HomSh(X,R)(F,Hom(G,H)).
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20. Definition of derived categories

In this section we give a first introduction to derived categories. We
only give a brief account on the subject and refer to the first chapter
of [1] (or Chapters 10-13 of [2]) for details and proofs.
Definition 20.1. Let C be an abelian category and let u : X −→ Y be
a morphism in C(C) or in K(C). We say that u is a quasi-isomorphism
(qis for short) if the morphisms H i(u) : H i(X) −→ H i(Y ) are isomor-
phisms, for all i ∈ Z.

A related notion is that of acyclic complexes: a complex X in C(C)
or in K(C) is acyclic (or exact) if H i(X) ≃ 0 for all i ∈ Z (in other
words the long sequence · · ·X i di

−→ X i+1 · · · is exact).
Exercise 20.2. Let u : X −→ Y be a morphism in C(C). Then u is a
qis if and only if ker(u) and coker(u) are acyclic.

The derived category of C, denoted D(C), is obtained from C(C) by
inverting the qis. This process is called localization.
Definition 20.3. Let A be a category and S a family of morphisms
in A. A localization of A by S is a category AS (a priori in a bigger
universe) and a functor Q : A −→ AS such that

(i) for all s ∈ S, Q(s) is an isomorphism,
(ii) for any category B and any functor F : A −→ B such that F (s) is

an isomorphism for all s ∈ S, there exists a functor FS : AS −→ B
such that F ≃ FS ◦Q,

(iii) denoting by Func(·, ·) the category of functors, the functor
◦Q : Func(AS ,B) −→ Func(A,B) is fully faithful (which im-
plies unicity of FS in (ii)).

It is possible to construct AS as a category with the same objects
as A and with morphisms defined as chains (s1, u1, s2, u2, . . . , sn, un)
with si ∈ S and ui any morphism in A and compatible sources/targets
(X1

s1←− Y1
u1−→ X2

s2←− Y2
u2−→ X3 · · · ) modulo some equivalence re-

lation. Such a chain is meant to represent un ◦ s−1
n ◦ un−1 ◦ · · · ◦

s−1
1 . The equivalence relation is generated by (s1, u1, . . . , sn, un) ∼

(s1, u1, . . . , s, s, . . . , sn, un) where (s, s), s ∈ S, is inserted between ui

and si+1. The composition is the concatenation.
However in our situation the localization will be obtained by a cal-

culus of fractions and we only need chains (s, u) length 2. We will not
use this fact and refer to Section 21.3.
Definition 20.4. Let C be an abelian category. The derived category
of C is the localization D(C) = (K(C))Qis. We denote by QC : K(C) −→
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D(C) the localization functor (or its composition with C(C) −→ K(C)).
Starting with K∗(C) where ∗ = +,− or b, we define in the same way
D∗(C).

The obvious functor C(C) −→ K(C) sends qis to qis and hence induces
a functor (C(C))Qis −→ (K(C))Qis. We can prove that this functor is
an equivalence (see [?]). So we could as well define D(C) directly from
C(C). The point is that, starting from K(C), the localization can be
constructed by a calculus of fractions.

The categories K(C) and D(C) are additive. They are not abelian in
general.

By definition the cohomology functors H i : K(C) −→ C, i ∈ Z, factor-
ize through the localization functor. We still denote by H i : D(C) −→ C
the induced functors.
Lemma 20.5. Let C, C ′ be abelian categories. Let F : C −→ C ′ be an
exact functor. Then C(F ) sends acyclic complexes to acyclic complexes
and it sends qis to qis. In particular QC′ ◦K(F ) : K(C) −→ D(C ′) sends
qis to isomorphisms and factorizes in a unique way through a functor
D(C) −→ D(C ′) that we still denote by F :

K(C)
K(F )

//

QC
��

K(C ′)
QC′
��

D(C) F // D(C ′).

We have a natural embedding of C in C(C) which sends X ∈ C to
the complex (X ·, d·

X) = · · · −→ 0 −→ X −→ 0 −→ · · · with X0 = X
and X i = 0 for i ̸= 0. This induces by composition other functors
C −→ K(C) and C −→ D(C). We can check that all these functors are
fully faithful embeddings of C in C(C), K(C) or D(C).

We have the following generalization of Proposition 11.8.
Proposition 20.6. Let C be an abelian category. We assume that C
has enough projectives and we let P be its full subcategory of projective
objects. We denote by Q|P : K−(P) −→ D−(C) the functor induced by
the quotient functor. Then Q|P is an equivalence of categories.

Similarly, if C has enough injectives and I is the full subcategory of
injective objects, then Q|I : K+(I) −→ D+(C) is an equivalence.
Definition 20.7. Let C, C ′ be abelian categories. We assume that C has
enough projectives. Let F : C −→ C ′ (or F : C−(C) −→ C−(C ′)) be a right
exact functor. Let K(F ) : K−(P) −→ K−(C ′) be the functor induced
by F . We define LF : D−(C) −→ D−(C ′) by LF = QC′ ◦K(F ) ◦ resproj,
where resproj is an inverse to the equivalence Q|P of Proposition 20.6.
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In the same way, if C has enough injectives and F is left exact, we
define RF : D+(C) −→ D+(C ′) by RF = QC′ ◦K(F )◦resinj, with resinj

inverse of Q|I .
By definition we have H iLF = LiF .
If F is exact then LF ≃ F ≃ RF with the notation of Lemma 20.5.
The first interest of introducing the derived category is the possibility

to compose derived functors:
Proposition 20.8. Let F : C −→ C ′, G : C ′ −→ C ′′ be left exact functors
between abelian categories. We assume that C and C ′ have enough in-
jectives and that F sends the injective objects of C to G-acyclic objects
of C ′. Then R(G ◦ F ) ≃ RG ◦RF .
Lemma 20.9. Let f : X −→ Y , g : Y −→ Z, be continuous maps. Then
R(g ◦ f)∗ ≃ Rf∗ ◦Rg∗. If the spaces are Hausdorff and locally compact
spaces, we also have R(g ◦ f)! ≃ Rf! ◦ Rg!.
Proof. We have (g ◦ f)∗ ≃ g∗ ◦ f∗ by Lemma 17.19. If F ∈ Sh(X) is in-
jective, then f∗(F ) is injective (use Hom(G, f∗(F )) ≃ Hom(f−1(G), F )
and the fact that f−1 is exact). Similarly, if F ∈ Sh(X) is c-soft, then
f!(F ) is c-soft. Hence we can apply Proposition 20.8 in both cases. □

Remark 20.10. A particular case of the lemma is given by Z = pt.
Then g∗ ≃ Γ(Y ;−) and Rg∗ ≃ RΓ(Y ;−). We deduce

RΓ(X;F ) ≃ RΓ(Y ; Rf∗(F )) for any F ∈ Sh(X).
Hence H i(X;F ) ≃ H i(Y ; Rf∗(F ).
20.1. Application: example of computation with sheaves. Let
X = S2n−1 be the sphere of dimension 2n − 1. We let G = Z/kZ
act freely on X (see below). We set Y = X/G, q : X −→ Y the quo-
tient map. We want to compute H∗(Y ; ZY ). Here is how to build
such actions: we consider S2n−1 as the unit sphere of Cn and choose
integer p1, . . . , pn all primes with k; then the action [m] · (z1, . . . , zn) =
(ζmp1z1, . . . , ζ

mpnzn), with ζ = e2iπ/k, is free and preserves S2n−1. The
quotient Y = Lk,p1,...,pn is called a lens space. When n = 2 we set
Lp/k = Lk,1,p. This is a 3 dimensional manifold. The spaces L1/7 and
L2/7 are homotopic but not homeomorpic.
(i) We set F = q∗(ZX). We can see that q∗ is exact (since q is proper,
we have q∗ = q!; then we can use Proposition 17.12 to compute the
germs of q∗(F ) and check that q∗ is exact). Hence q∗ ≃ Rq∗ and by
Remark 20.10 we deduce H i(Y ;F ) ≃ H i(X; ZX).
(ii) Let us prove that we have an exact sequence

(20.1) 0 −→ ZY
a−→ F

u−→ F
b−→ ZY −→ 0,
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where a is an adjunction morphism corresponding to the adjunction
(q−1, q∗), b is a similar morphism and u = idF − µ1 with µ1 induced
by the action of a generator of G. Moreover b ◦ a : ZY −→ ZY is the
multiplication by k.

(ii-a) We have ZX = q−1(ZY ). The adjunction morphism is a : ZY −→
q∗q

−1(ZY ) = F . We pick y ∈ Y . The fiber Ey = q−1(y) is a set of
k points with an action of G and Ey ≃ G as sets with G-action (G
acting on itself by addition). Then (ZY )y ≃ Z, Fy ≃ ZEy and ay is the
diagonal map v 7→ (v, . . . , v).

(ii-b) Let us describe b. For V ∈ Op(Y ), we have F (V ) = {f : q−1(V ) −→
Z; f locally constant} and ZY (V ) = {g : V −→ Z; g locally constant}.
We define b(V )(f) = g where g is the function g(y) = ∑

x∈Ey
f(x). We

can check that g is indeed locally constant, and then that the b(V )
give a morphism of sheaves. On the germs the map by : Fy ≃ ZEy −→
(ZY )y ≃ Z is the sum by(v1, . . . , vk) = ∑

vi.
The description of a, b in the germs give b ◦ a = kid.

(ii-c) For a given g ∈ G, g acts on q−1(V ) for each V ∈ Op(Y ). We write
νg : q−1(V ) −→ q−1(V ) this action. Then we define µg(V ) : F (V ) −→
F (v) by µg(V )(f) = f ◦ νg−1 . This defines µg : F −→ F . In the germs
(µg)y acts by cyclic permutation on the basis of Fy = ZEy .

(ii-d) Using the descriptions of a, b, µ in the germs we see that the
sequence (20.1) is exact.

(iii) We set L = coker(a) = ker(b) = im(u). We have the short exact
sequences 0 −→ ZY

a−→ F −→ L −→ 0, 0 −→ L −→ F
b−→ ZY −→ 0. We

have H0(Y ;F ) = H0(X; ZX) = Z. We can check H0(Y ; a) = idZ

and H0(Y ; b) = k idZ. We have H i(Y ;F ′) = 0 for any sheaf F ′ and
i > dim Y = 2n− 1 (see Proposition 21.10 below). Then, by induction
on i we find

H0(Y ; ZY ) = Z,

H i(Y ; ZY ) = Z/kZ, for i even and 0 < i < 2n− 2,
H2n−1(Y ; ZY ) = Z,

H i(Y ; ZY ) = 0, else.

20.2. Another example.

Notation 20.11. For a complex X = (X ·, d·
X) in C(C) (or in K(C) or

D(C)) and for k ∈ Z, we denote by X[k] the shifted complex defined
by (X[k])i = X i+k and di

X[k] = (−1)kdi+k
X .
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In particular, for X ∈ C viewed as a complex concentrated in degree
0, the complex X[k] is concentrated in degree −k.

Definition 20.12. Let f : X −→ Y be a continuous map of Hausdorff
and locally compact spaces. We say that F ∈ Sh(X) is f -soft if, for
any y ∈ Y , F |f−1(y) is c-soft.

Proposition 20.13. The family of f -soft sheaves if f!-injective.

Proposition 20.14. Let p : Rn+d −→ Rd be the projection and let k be
an abelian group. Then Rp!(kRn+d) ≃ kRd [−n]. In particular

H i
c(Rn; kRn) ≃

k for i = n,
0 for i ̸= n.

Proof. If d > 1 we can write p = q ◦ r, with r : Rn+d −→ Rn−1+d and
q : Rn−1+d −→ Rd. By Lemma 20.9 we can prove the result by induction
on n, once we have check the case n = 1.

In dimension 1 we have seen that (18.1) gives a flabby, hence c-
soft, resolution of kR. On Rd+1 we define F by F(U) = {f : U −→ k;
f |U∩(Rd×{y}) is locally constant, for each y ∈ R}. We remark that kRd+1

is a subsheaf of F and we define G = coker(kRd+1 −→ F). By definition
we have the exact sequence 0 −→ kRd+1 −→ F −→ G −→ 0. For each
x ∈ Rd, its restriction to r−1(x) is (18.1), where r : Rd+1 −→ Rd is the
projection. Hence F and G are r-soft and we can use the resolution to
compute Rr!(kRd+1). □

We have used a slight generalization of Lemma 18.3 in the proof of
Proposition 20.14 and we generalize a bit more in the next lemma. Let
p : Rn+1 −→ Rn be the projection and, for each x ∈ R, let ix : Rn × {x}
be the inclusion. For any F ∈ Sh(Rn+1) we set

R0(F ) =
∏
x∈R

ix∗i
−1
x (F ).

The adjunctions (i−1
x , ix∗) give the natural morphisms F −→ ix∗i

−1
x (F ).

Since Hom(F,R0(F )) ≃ ∏x∈R ix∗Hom(F, i−1
x (F )) we obtain a morphism

ε(F ) : F −→ R0(F ). We set R1(F ) = coker(ε(F )) and get a sequence

(20.2) 0 −→ F
ε(F )−−→ R0(F ) −→ R1(F ) −→ 0.

Lemma 20.15. Let p : Rn+1 −→ Rn be the projection and let F ∈
Sh(Rn+1). Then

(1) The morphism ε(F ) is a monomorphism and the sequence (20.2)
is exact.

(2) The sheaves R0(F ) and R1(F ) are p-soft.
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Proof. For y ∈ Rn we let jy : R −→ Rn+1 be the inclusion x 7→ (x, y). We
have (j−1

y (F ))x ≃ F(x,y). Since exactness can be checked at the germs,
we can as well restrict first to R through j−1

y . In the same way, a sheaf
G is p-soft if, for each y ∈ Rn the sheaf j−1

y (G) is c-soft. Hence we may
assume from the beginning that n = 0 and we work on R.
(a) For U ⊂ R open the morphism F (U) −→ (∏x∈R(Fx){x})(U) =∏

x∈R(Fx){x}(U) = ∏
x∈U Fx maps a section s to the product of its germs;

if the image is 0, then sx = 0 for all x ∈ U and s = 0. Hence ε(F )(U)
is injective.
(b) It is not difficult to see that R0(F ) is flabby, hence c-soft. Let
C ⊂ R be compact subset and s ∈ R1(F )(C) = lim−→C⊂U

R1(F )(U),
where U is open, be given. We pick U such that s is defined on U .

For each x ∈ C we can choose an open interval I(x) and t(x) ∈
R0(F )(I(x)) such that d(t(x)) = s|I(x), where d : R0(F ) −→ R1(F ) is
the quotient map. We cover C by a finite number of such intervals
say I(x1), . . . , I(xN). We write I(xk) = ]ak, bk[. We can assume that
the I(k)’s are ordered in the sense that ak < ak+1, bk < bk+1. We set
V = ⋃N

k=1 I(xk). We first assume for simplicity that V is connected so
V = ]a1, bN [ and we set W = ]a2, bN−1[.

SinceR0(F ) is c-soft we can find another section u(x1) ∈ R0(F )(I(x1))
which coincides with t(x1) near I(x1) ∩ (C ∪W ) and which is 0 near
a1. We set s′

1 = d(u(x1)). Then s′
1|I(x1)∩W coincides with s|I(x1)∩W . In

the same way we can find s′
N ∈ R1(F )(I(xN)) such that s′

N |I(xN )∩(C∪W )
coincides with s|I(xN )∩(C∪W ) and is 0 near bN . Then s′

1, s|W and s′
N

glue into a section s′ of R1(F )(V ) which coincides with s near C and
is 0 near a1 and bN . Now s′ can be extended by 0 on R.

When U has several components we argue in the same way near each
component and make the sum of the sections. This gives an extension
of s to R and proves that R1(F ) is c-soft. □
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21. More on derived categories

21.1. Triangulated structure. Starting with an abelian category C
we have define C(C) which is abelian, then K(C) and D(C). It turns
out that the last two categories are not abelian. But they have another
structure: they are “triangulated”.

Notation 21.1. For a complex X = (X ·, d·
X) in C(C) (or in K(C) or

D(C)) and for k ∈ Z, we denote by X[k] the shifted complex defined
by (X[k])i = X i+k and di

X[k] = (−1)kdi+k
X .

In particular, for X ∈ C viewed as a complex concentrated in degree
0, the complex X[k] is concentrated in degree −k.

Some motivation for triangles. We define K : Mor(C) −→ C, (X u−→
Y ) 7→ ker(u) and C : Mor(C) −→ C, (X u−→ Y ) 7→ coker(u). We have
seen that the functor K is left exact and R0K = K (of course), R1K =
C, RiK = 0, i ̸= 0, 1. In the same way the functor C is right exact and
L0C = C, L−1C = K, LiC = 0, i ̸= 0,−1. In particular RiK = Li−1C.

The same computation made in D(C) shows in fact that RK =
LC[−1]. For a morphism of complexes u : X −→ Y , LC(u) is called the
cone of u, denoted cone(u).

Let P1, P2 : Mor(C) −→ C be the source and target, P1(X −→ Y ) = X,
P2(X −→ Y ) = Y . Then K comes with a morphism K −→ P1 and
C with a morphism P2 −→ C. We deduce RK −→ P1 and P2 −→ LC.
Hence, for u : X −→ Y in C(C), we have morphisms Y −→ cone(u) and
cone(u) −→ X[1]. Summing up we have X u−→ Y −→ cone(u) −→ X[1]
(and we could go on X[1] −→ Y [1] −→ · · · ).

A triangle in D(C) (or K(C) or C(C)) is the data of three morphisms
X

u−→ Y
v−→ Z

w−→ X[1] such that v◦u = w◦v = u[1]◦w = 0. A morphism
of triangles from X −→ Y −→ Z −→ X[1] to X ′ −→ Y ′ −→ Z ′ −→ X ′[1]
is the data of three morphisms X −→ X ′,. . . , Z −→ Z ′ making three
commutative squares. In D(C) a triangle is called distinguished if it is
isomorphic to a cone type triangle as above.

More precise definitions. In fact the cone has an easy description
and is well-defined as a functor cone : C(Mor(C)) −→ C(C) as follows.
Remark that Mor(C(C)) ≃ C(Mor(C)). For u : X −→ Y we define
conei(u) = X i+1 ⊕ Y i with differential

di =
(
−di+1

X 0
ui+1 di

Y

)
.
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For u : X −→ Y we have natural morphisms in C(C): α(u) : Y −→
cone(u) and β(u) : cone(u) −→ X[1] (remember the − sign in the dif-
ferential of X[1]). A mapping cone triangle in C(C) is a triangle of the
form X

u−→ Y
α(u)−−→ cone(u) β(u)−−→ X[1].

A triangle A
a−→ B

b−→ C
c−→ A[1] in K(C) is called distinguished

if is isomorphic to the image in K(C) of a mapping cone triangle of
C(C), X u−→ Y

α(u)−−→ cone(u) β(u)−−→ X[1] (which means that we have
isomorphisms in K(C), f : A −→ X, g : B −→ Y , h : C −→ cone(u), which
make commutative squares in K(C).

Proposition 21.2. Let C be an additive category. The distinguished
triangles of K(C) satisfy:

• a triangle isomorphic to a distinguished triangle is distinguished,
• X idX−−→ X −→ 0 −→ X[1] is distinguished,
• any u : X −→ Y can be embedded in a distinguished triangle
X

u−→ Y −→ Z −→ X[1],
• X u−→ Y

v−→ Z
w−→ X[1] is distinguished if and only if Y v−→ Z

w−→
X[1] −u[1]−−−→ Y [1] is distinguished,
• any commutative diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g f [1]

where the rows are distinguished triangles can be completed into
a morphism of triangles,
• octahedron axiom: any composition X

u−→ Y
v−→ Z gives rise

to a commutative (up to sign) diagram of four distinguished
triangles

X Y

Z

X ′

Y ′

Z ′u

vv ◦ u

+1

+1

+1

+1
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(with distinguished triangles really pictured as triangles, the
diagram has a octahedron shape).

Definition 21.3. A triangulated category is an additive category en-
dowed with an automorphism, denoted X 7→ X[1], and a family of tri-
angles, called distinguished, satisfying the axioms of Proposition 21.2.

Proposition 21.4. Let C be an abelian category. We say that a trian-
gle in D(C) is distinguished if it is isomorphic to the image of a dis-
tinguished triangle of K(C) by the localization functor K(C) −→ D(C).
Then D(C) is a triangulated category.

Moreover, if 0 −→ X
u−→ Y

v−→ Z −→ 0 is an exact sequence in C(C),
then there exists a morphism Z

w−→ X[1] in D(C) such that X u−→ Y
v−→

Z
w−→ X[1] is distinguished.

Proposition 21.5. The derived functors of left or right exact functors
send distinguished triangles to distinguished triangles.

For the next statement we remark that H0(X[i]) = H i(X).

Proposition 21.6. Let C be an abelian category. The functor H0 : D(C) −→
C turns distinguished triangles into long exact sequences.

For a givenX ∈ D(C), the functors HomD(C)(X,−) and HomD(C)(−, X)
also turn distinguished triangles into long exact sequences. This follows
from the proposition when we remark that

(21.1) HomD(C)(X, Y [i]) ≃ H iRHom(X, Y ).

Indeed both terms are computed by taking an injective resolution of Y
(for the LHS by saying that D(C) is equivalent to K(injectives), for
the RHS by the definition of derived functor).

Remark 21.7. We have noticed that Mor(C(C)) ≃ C(Mor(C)). How-
ever it is not true that Mor(D(C)) ≃ D(Mor(C)) (what about Mor(K(C))
and K(Mor(C))?). The functor cone induces a functor K(Mor(C)) −→
K(C). It also sends quasi-isomorphisms to quasi-isomorphisms and
induces a functor D(Mor(C)) −→ D(C). However, it is not a func-
tor from Mor(D(C)) to D(C). If we have a morphism v : X −→ Y in
D(C), we can represent v as a morphism of complexes in C(C), say
v′ : X ′ −→ Y ′ (for example by taking injective/proejctive resolutions)
and compute cone(v′); for another representative v′′ : X ′′ −→ Y ′′ we
have cone(v′) ≃ cone(v′′), but not in a canonical way. So, cone(v) is
well-defined up to isomorphism, but it is not a functor from Mor(D(C))
to D(C).
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21.2. Resolutions via double complexes. Let C be an abelian cat-
egory and X = (· · · −→ 0 −→ X i −→ X i+1 −→ · · · −→ Xj −→ 0 −→ · · · ) be
an object of C(C). We assume that we have a commutative diagram

X i //

��

X i+1 //

��

· · · // Xj

��
Y i,0 di,0

1 //

di,0
2��

Y i+1,0 di+1,0
1 //

��

· · · // Y j,0

��
Y i,1 //

di,1
2��

Y i+1,1 //

��

· · · // Y j,1

��
... ... ... ...

where
• the rows Y i,k −→ Y i+1,k −→ · · · −→ Y j,k are complexes, for each k,
• the columns X l −→ Y l,0 −→ Y l,1 −→ Y l,2 −→ · · · are resolutions of
X l, for each l.

We define the total complex of Y ∗,∗ as the complex Tot∗(Y ) where
Totn(Y ) = ⊕

p+q=n Y
p,q with differential dn = ∑

p+q=n(dp,q
1 +(−1)pdp,q

2 ).
Then we can check:

Lemma 21.8. The morphisms Xk −→ Y k,0 define a morphism of com-
plexes X −→ Tot∗(Y ) which is a quasi-isomorphism.

Example 21.9. Let p : Rn+1 −→ Rn be the projection and F = (· · · −→
0 −→ F i −→ F i+1 −→ · · · −→ F j −→ 0 −→ · · · ) an object of C(Sh(Rn+1)).
We use the functors R0, R1 of (20.2) in the double complex

F i //

��

F i+1 //

��

· · · // F j

��
R0(F i) //

��

R0(F i+1) //

��

· · · // R0(F j)

��
R1(F i) // R1(F i+1) // · · · // R1(F j)

and we deduce a quasi-isomorphism F −→ G where G = 0 −→ R0(F i) −→
(R0(F i+1) ⊕ R1(F i)) −→ · · · −→ (R0(F j) ⊕ R1(F j−1))R1(F j) −→ 0. By
Lemma 20.15 G is formed by p-soft sheaves.

Using this example and proceeding as in the proof of Proposition 20.14
we can prove
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Proposition 21.10. Let p : Rn+1 −→ Rn be the projection and let F ∈
C(Sh(Rn+1)) be a complex of sheaves such that H iF = 0 for i ̸∈ [0, d],
for some d. Then H iRp!F = 0 for i ̸∈ [0, d+ 1]. In particular, for any
F ∈ Sh(Rn) we have H i

c(Rn;F ) ≃ 0 if i > n.

Proof. Using the truncation functors we can really assume that F i = 0
for i ̸∈ [0, d]. Then the complex G found in the example is a p-soft
resolution of F of length d+ 1 and the conclusion follows. □

21.3. Calculus of fractions.

Definition 21.11. A family S of morphisms in A is a left multiplica-
tive system if

(i) any isomorphism belongs to S,
(ii) if f, g ∈ S and g ◦ f is defined, then g ◦ f ∈ S,
(iii) for given morphisms f, s, with s ∈ S, as in the following dia-

gram, there exist g, t, with t ∈ S, making the diagram commu-
tative

X
g //

t
��

Y

s
��

X ′ f // Y ′,

(iv) for two given morphisms f, g : X −→ Y in A, if there exists
s ∈ S such that s ◦ f = s ◦ g, then there exists t ∈ S such that
f ◦ t = g ◦ t:

W
t

99K X
f,g−−→ Y

s−→ Z.

Proposition 21.12. Let A be a category and S a left multiplicative
system. Then AS can be described as follows. The set of objects is
Ob(AS) = Ob(A). For X, Y ∈ Ob(A), we have HomAS (X, Y ) =
{(W, s, u); s : W −→ X is in S and u : W −→ Y is in A}/ ∼, where the
equivalence relation ∼ is given by (W, s, u) ∼ (W ′, s′, u′) if there exists
(W ′′, s′′, u′′), s′′ ∈ S, such that we have a commutative diagram

W
s

}}

u

!!
X W ′′s′′
oo u′′

//

OO

��

Y.

W ′

s′
aa

u′
==
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The composition “u′s′−1us−1” is visualized by the diagram

Y ′

t
~~

v
!!

s◦t

vv

u′◦v

((
X Ws
oo

u
// Y W ′

s′
oo

u′
// Z.

where t, v, t ∈ S, are given by (iii) in Definition 21.11.

Let us go back to our abelian category C.

Proposition 21.13. Let Qis be the family of qis in K(C). Then Qis
is a left (and right) multiplicative system.

21.4. Truncation functors. Let C be an abelian category. For a given
n ∈ Z we define τ≤n, τ≥n : C(C) −→ C(C) by

τ≤n(X) = · · · −→ Xn−2 −→ Xn−1 −→ ker(dn
X) −→ 0 −→ · · ·

τ≥n(X) = · · · −→ 0 −→ coker(dn−1
X ) −→ Xn+1 −→ Xn+2 −→ · · · .

We have natural morphisms in C(C), for n ≤ m,

τ≤n(X) −→ X, X −→ τ≥n(X),
τ≤n(X) −→ τ≤m(X), τ≥n(X) −→ τ≥m(X).

We have H i(τ≤n(X)) ≃ H i(X) for i ≤ n and H i(τ≤n(X)) ≃ 0 for i > 0.
We have a similar result for τ≥n(X) and the above morphisms induce
the tautological morphisms on the cohomology (that is, the identity
morphism of H i if both groups are non-zero, or the zero morphism).

In particular the functors τ≤n, τ≥n send qis to qis and they induce
functors, denoted in the same way, on D(C), together with the same
morphisms of functors. We see from the definition, for any X ∈ D(C)
and any i ∈ Z:

(21.2) τ≤iτ≥i(X) ≃ τ≥iτ≤i(X) ≃ H i(X)[−i].

Lemma 21.14. Let C be an abelian category and let X ∈ D(C) be an
objet concentrated in one degree i0, that is, H i(X) ≃ 0 if i ̸= i0. Then
X ≃ H i0(X)[−i0].

Proof. By the hypothesis and by the description of the cohomology
of τ≤n(X), τ≥n(X), the morphisms τ≤i0(X) −→ X and τ≤i0(X) −→
τ≥i0(τ≤i0(X)) are isomorphisms in D(C). Hence X ≃ τ≥i0(τ≤i0(X))
and we conclude with (21.2). □
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21.5. The case of cohomological dimension 1. The next propo-
sition describes D−(C) when C has cohomological dimension 1, which
means that Exti(X, Y ) ≃ 0 for all i > 1 and all X, Y ∈ C. We first
give some lemmas.
Lemma 21.15. Let C be an abelian category. Then Q ∈ C is projective
if and only if Ext1(Q,M) ≃ 0 for all M ∈ C.
Proof. The “only if” statement is a particular case of the fact LiF (Q) ≃
0 for i > 0 if Q is projective and F is a right exact functor.

Conversely, let X p−→ Y −→ 0 be an epimorphism in C. We set M =
ker(p). Hence 0 −→ M −→ X −→ Y −→ 0 is an exact sequence. The long
cohomology exact sequence for the functor Hom(Q, ·) is written:

· · · −→ Hom(Q,X) −→ Hom(Q, Y ) −→ Ext1(Q,M) −→ · · ·
The hypothesis implies that Hom(Q,X) −→ Hom(Q, Y ) is an epimor-
phism, which proves that Q is projective. □

Lemma 21.16. Let C be an abelian category. We assume that for all
X, Y ∈ C we have Ext2(X, Y ) ≃ 0. Let P be a projective object and let
0 −→ Q

i−→ P be a monomorphism. Then Q is projective.
Proof. We set Z = coker(i). Let M ∈ C be any object. As in the proof
of Lemma 21.15 we have the long exact sequence

· · ·Ext1(P,M) −→ Ext1(Q,M) −→ Ext2(Z,M) −→ · · ·
Since P is projective, the first term vanishes by Lemma 21.15. The
second term vanishes by hypothesis. Hence Ext1(Q,M) ≃ 0 and Q is
projective by Lemma 21.15. □

Exercise 21.17. Let C be an abelian category with enough projec-
tives such that for all X, Y ∈ C we have Ext2(X, Y ) ≃ 0. Prove that
Exti(X, Y ) ≃ 0 for all i ≥ 2 and all X, Y ∈ C.
Exercise 21.18. Give a generalization of Lemma 21.16 and Exer-
cise 21.17 with 2 replaced by any k ≥ 2.

Lemma 21.19. Let C be an abelian category and let 0 −→ A
i−→ B

p−→
C −→ 0 be an exact sequence in C. We assume that p has a splitting,
that is, j : C −→ B such that p ◦ j = idB. Then i has a splitting, that is,
q : B −→ A such that q ◦ i = idA. Conversely, if i splits, then p splits.
Proposition 21.20. Let C be an abelian category. We assume that
for all X, Y ∈ C we have Ext2(X, Y ) ≃ 0. We also assume that
C has enough projectives. Then for all X ∈ D−(C) we have X ≃⊕

k∈Z(Hk(X))[−k]. (We remark that ⊕k∈Z(Hk(X))[−k] is the com-
plex L given by Lk = Hk(X) and dk

L = 0 for all k ∈ Z.)
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Proof. (i) We use the notation L of the proposition. Since C has enough
projectives we can find P ∈ D−(C) such that P k is projective for all
k ∈ Z and an isomorphism X ≃ P in D−(C).

We will define a morphism u : P −→ L in C(C) such that u is a qis.
Then u induces the required isomorphism in D(C). This is the same
as giving, for each i, a morphism ui : P i −→ Li such that di−1

P ◦ ui = 0
and the induced morphism Zi(P )/Bi(P ) −→ Li is an isomorphism.

(ii) We recall that we have monomorphisms 0 −→ Zi(P ) −→ P i and
0 −→ Bi(P ) −→ Zi(P ). By the hypothesis on C and by Lemma 21.16
we deduce that Zi(P ) and then Bi(P ) are projective. By (??) we have
the exact sequence

(21.3) 0 −→ Zi(P ) ai

−→ P i bi

−→ Bi+1(P ) −→ 0.

Since Bi+1(P ) is projective, the morphism bi in (21.3) has a splitting
and, by Lemma 21.19, there exists αi : P i −→ Zi(P ) such that αi ◦ ai =
id.

Let qi : Zi(P ) −→ H i(P ) = Li be the natural morphism. We define
ui : P i −→ Li as ui = qi ◦ αi. Since di−1 factorizes as

P i−1 f i−1
−−→ Bi(P ) gi

−→ Zi(P ) ai

−→ P i

we have ui ◦ di−1 = qi ◦ gi ◦ f i−1 and this vanishes because qi ◦ gi = 0.
We see also that the morphism Zi(P )/Bi(P ) −→ Li induced by ui is
the identity morphism of H i(P ). This concludes the proof. □

Example 21.21. We have seen that Ab has enough injectives and
that an abelian group is injective if and only if it is divisible. It follows
easily that a quotient of an injective abelian group is again injective.
We deduce that any abelian group M has an injective resolution of
length 1: 0 −→ M −→ I0 −→ I1 −→ 0. Hence Ext2(N,M) ≃ 0 for all
M,N ∈ Ab.

21.6. Example of sheaf computation. Let X be a Hausdorff and
locally compact space, let Z ⊂ X be a closed subset and U = X \ Z.
We let j : U −→ X, i : Z −→ X be the inclusions. For F ∈ Sh(X) we set

FZ = i!i
−1(F ), FU = j!j

−1(F ).

We apply Proposition 17.12 with f = i or f = j. Then f−1(y) is empty
or a point and Γc(f−1(y);F |f−1(y)) is 0 or Fy. This gives

(21.4) (FZ)x =

Fx if x ∈ Z,
0 if x ̸∈ Z,

(FU)x =

Fx if x ∈ U ,
0 if x ̸∈ U ,
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We remark that i is proper, hence i! = i∗ and FZ = i∗i
−1(F ). By the

adjunction (i−1, i∗) we have a natural morphism a : F −→ FZ . By (21.4)
we can see that ax is the identity morphism for x ∈ Z and ax = 0 for
x ̸∈ Z. Hence ax is always surjective and a is an epimorphism.

Lemma 21.22. We have FU |U ≃ F |U and there exists a unique mor-
phism b : FU −→ F such that b|U : FU |U −→ FU is the identity morphism.

Proof. If V ⊂ U we can see on the definition that FU(V ) = F (V ),
which proves the first assertion.

Now we pick any open subset V ⊂ X and s ∈ FU(V ). By definition
FU(V ) ⊂ (j∗j

−1F )(V ) = F (U ∩V ). The inclusion map supp(s) −→ V is
proper. Hence W = V \ supp(s) is open: indeed, for x ∈ W we choose
a compact neighborhood C ⊂ V of x; then C ∩ supp(s) is compact and
C \ (C ∩ supp(s)) is open and contains x; hence W contains an open
neighborhood of any of its point. Of course s|U∩V ∩W = 0. Since F is
a sheaf, there exists a unique s̃ ∈ F (V ) such that s̃|U∩V = s|U∩V and
s̃|W = 0.

We define b(V ) : FU(V ) −→ F (V ) by b(V )(s) = s̃. When V runs over
the open subsets, we can see that gives a sheaf morphism. □

Using (21.4) we see that the following excision sequence is exact
(21.5) 0 −→ FU −→ F −→ FZ −→ 0.

Lemma 21.23. Let Sn be the sphere of dimension n. Then

H i(Sn; kSn) ≃

k for i = 0, n,
0 else.

Proof. We choose a point x ∈ Sn and set Z = {x}, U = Sn \ Z.
Let i : Z −→ Sn j : U −→ Sn be the inclusions and a : Sn −→ {pt}
be the map to the point. We have a∗ = a! since Sn is compact.
Then Γ(Sn;FU) = a!j!(j−1(F )) = Γc(U ; j−1(F )) and Γ(Sn;FZ) =
a∗i∗(i−1(F )) = Γ(Z; i−1(F )) = Fx.

By Proposition 17.12 with f = i or f = j and the fact that f−1(y)
is either empty or a point, we see that the functors i! and j! are exact.
Hence Ri! = i!, Rj! = j!. We see also that they send soft sheaves to soft
sheaves. Hence R(a◦ i)! ≃ Ra! ◦Ri! and R(a◦j)! ≃ Ra! ◦Rj!. It follows
that RΓ(Sn;FU) ≃ RΓc(U ;F |U) and RΓ(Sn;FZ) ≃ RΓ(Z;F |Z).

For F = kSn , the sequence (21.5) becomes 0 −→ kU −→ kSn −→ kZ −→
0. We deduce the long cohomology sequence · · · −→ H i

c(U ; kU) −→
H i(Sn; kSn) −→ H i(Z; kZ) −→ · · · Since Z is a point we conclude with
Proposition 20.14. □
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