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1. Example of derived functors: group (co-)homology

Let G be a group. A (left) G-module is an abelian group A together
with a group morphism ρ : G −→ Aut(A), where Aut(A) = {α : A −→ A;
α is additive and invertible }. We usually forget ρ from the notation
and we set, for g ∈ G, a ∈ A, ga = (ρ(g))(a). We can rephrase the
definition by “a G-module is an abelian group A with an action of G,
G × A −→ A, (g, a) 7→ ga such that eGa = a, g(a + a′) = ga + ga′

and g(ha) = (gh)a, for g, h ∈ G, a, a′ ∈ A (and eG the unit of G).
A morphism of G-modules is u : A −→ B is an additive map such that
u(ga) = gu(a) for all g ∈ G, a ∈ A. We let HomG(A,B) be the set of
G-module morphisms from A to B. We let G −Mod be the category
of G-modules and morphisms of G-modules.

Let Ab be the category of abelian groups and additive morphisms.

1.1. Exact sequences, exact functors. A composable pair of mor-
phisms A f−→ B

g−→ C in G−Mod is “exact at B” if ker g = im f . A long
exact sequence is a sequence An dn

−→ An+1, n ∈ Z, which is exact at each
An, n ∈ Z. A short exact sequence is a sequence 0 −→ A

f−→ B
g−→ C −→ 0

which is exact at A, B and C, that is, f is injective and C ≃ B/A.
A functor F : G −Mod −→ Ab is a “function” on objects and mor-

phisms A 7→ F (A), (A f−→ B) 7→ (F (A) F (f)−−→ F (B)), such that
F (idA) = idF (A) for all A ∈ G − Mod, and F (g ◦ f) = F (g) ◦ F (f)
for all composable morphisms f, g. For the moment we only consider
the examples:

1) The functor of invariants A 7→ AG = {a ∈ A; ga = a for all
g ∈ G} and, for (A f−→ B) fG = f |AG . Note that fG takes values in
BG because f commutes with the G-action. We remark that AG is the
maximal subgroup of A stable by G and with a trivial action.

2) The functor of coinvariants A 7→ AG = A/B(A), where B(A) is
the subgroup of A generated by the elements ga−a, g ∈ G, a ∈ A. We
remark that, for f : A −→ B, the composition A f−→ B −→ BG sends B(A)
to 0 and defines fG : AG −→ BG. We remark that AG is the maximal
quotient of A with an induced action of G which is trivial.

A functor F : G−Mod −→ Ab is additive if the maps HomG(A,B) −→
Hom(F (A), F (B)), f 7→ F (f), are group morphisms, for all A,B ∈
G−Mod.

An additive functor F : G − Mod −→ G − Mod is exact if it sends
short exact sequences to short exact sequences. It is left exact if, for
any exact sequence 0 −→ A

f−→ B
g−→ C, the sequence 0 −→ F (A) F (f)−−→
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F (B) F (g)−−→ F (C) is exact. It is right exact if, for any exact sequence
A

f−→ B
g−→ C −→ 0, the sequence F (A) F (f)−−→ F (B) F (g)−−→ F (C) −→ 0 is

exact.
Lemma 1.1. The functor (−)G : G−Mod −→ Ab is left exact (but not
right exact).

The functor (−)G : G−Mod −→ Ab is right exact (but not left exact).
1.2. Projectives, injectives, derived functors. The starting point
of homological algebra is that it makes sense, for a given left (or right)
exact functor, to “measure” its deviation from being exact. We will
see for example that there exists a first derived functor H1(G,−) such
that, for any exact sequence 0 −→ A

u−→ B
v−→ C −→ 0, there exists an

exact sequence 0 −→ AG uG

−→ BG vG

−→ C −→ H1(G,A). The fact that
(−)G is not right exact means that H1(G,−) is not the zero functor.
Definition 1.2. A G-module P is projective if, for any given surjective
morphism v : B −→ C in G − Mod and any u : P −→ C, there exists
u′ : P −→ B such that u = v ◦ u′:

B C 0

P

v

u
u′

We can rephrase the definition by saying that a G-module P is pro-
jective if, for any short exact sequence B −→ C −→ 0, the sequence
Homk(P,B) −→ Homk(P,C) −→ 0 is exact (it then follows that the
functor HomG(P, ·) is exact, because exactness of HomG(P,−) at the
left is a general fact for any P – check!)

We will see that there exist many projective G-modules and more
precisely, for any A ∈ G −Mod there exists a projective G-module P
and a surjective morphism P −→ A. We will see that projective modules
have a good behaviour with respect to (−)G:

Lemma 1.3. Let 0 −→ A
u−→ B

v−→ P −→ 0 be an exact sequence in
G − Mod. We assume that P is projective. Then the sequence 0 −→
AG

uG−→ BG
vG−→ PG −→ 0 is exact.

The idea is to replace an arbitrary G-module by a sequence of pro-
jectives.
Definition 1.4. Let A ∈ G −Mod. A left resolution of A is a long
exact sequence

· · · −→ P i di

−→ P i+1 −→ · · · −→ P−1 d−1
−−→ P 0 ε−→ A −→ 0.
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(More precisely, the resolution is (P ·, d·) and ε is the augmentation mor-
phism.) It is called a projective resolution if all the P i’s are projective
modules.

Proposition 1.5. Let A ∈ G −Mod. Let (P ·, d·) be a projective left
resolution of A and let

· · · −→ P i
G

di
G−→ P i+1

G −→ · · · −→ P−1
G

d−1
G−−→ P 0

G −→ 0
be the sequence obtained by applying (−)G to this resolution. Then
Hi(G,A) :=ker(d−i

G )/ im(d−i−1
G ) is independent of the choice of {P ·, d·}.

Then A 7→ Hi(G,A) is a functor, called the ith left derived functor
of (−)G. The groups Hi(G,A) are called the homology group of A. We
can check that H0(G,A) = AG.

Proposition 1.6. Let 0 −→ A
u−→ B

v−→ C −→ 0 be an exact sequence in
G−Mod. Then there exists a long exact sequence

Hi(G,A) Hi(G,u)−−−−→ Hi(G,B) Hi(G,v)−−−−→ Hi(G,C) δi

−→ Hi−1(G,A)
−→ · · · −→ H1(G,C) −→ AG −→ BG −→ CG −→ 0

Reversing the arrows we will also define the notion of injective objects
and use them to define the right derived functors of (−)G, H i(G,A) (the
cohomology of A).

We will give a proof in a more general framework. The groups
Hi(G,A), H i(G,A) are interesting invariants associated with A.

We will introduce similar results for abelian categories. Our main
example will be the category of sheaves on a topological space X. Then
the derived functors of the “global section” functor will recover the
cohomology groups of X, which are the first invariants associated with
a manifold.
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2. Abelian categories, complexes

2.1. Categories, the example of sheaves.
Definition 2.1. A category C consists of the data of

(i) a set Ob(C) (the set of objects),
(ii) for any X, Y ∈ Ob(C), a set HomC(X, Y ) (the set of mor-

phisms),
(iii) for any X, Y, Z ∈ Ob(C), a map (the composition)

HomC(X, Y )× HomC(Y, Z) −→ HomC(X,Z), (f, g) 7→ g ◦ f,
satisfying

(i) ◦ is associative, that is, (h ◦ g) ◦ f = h ◦ (g ◦ f) as soon as both
sides make sense,

(ii) for each X ∈ Ob(C), there exists idX ∈ HomC(X,X) which is
neutral for ◦ on the right and on the left, that is, idX ◦ f = f ,
g ◦ idX = g, as soon as the left hand sides make sense.

We often write Hom(X, Y ) instead of HomC(X, Y ). We also write
f : X −→ Y instead of f ∈ Hom(X, Y ). A morphism f : X −→ Y is
an isomorphism if there exists g : Y −→ X (the inverse of f) such that
f ◦ g = idY and g ◦ f = idX . If such a g exists, it is unique.

To avoid logical contradiction we cannot consider the set of all sets.
So, when we consider the category Set of sets (or the category of
groups, rings,. . . ) we assume that we have chosen a set U , called
a universe which is stable by the operations of set’s theory (union,
intersection, product,. . . ) and we only consider the categories whose
objects and morphisms sets belong to U . We admit that, for any given
set X, there exists a universe containing X.

Examples of categories abound (the category of sets, topological
spaces, manifolds, rings,. . . ) but we will soon restrict to categories
which are similar in some sense to the category of modules over a ring,
so called abelian categories. It is often possible to associated an abelian
category with a priori non linear objects, for example the category of
sheaves of groups on a topological space is abelian. Since it is a good
source of examples we already give the definition.
Definition 2.2. Let X be a topological space. A presheaf P of abelian
groups on X is the data of

(i) for each open subsets U ⊂ X an abelian group P (U), the group
of sections over U ,

(ii) for each inclusion of open subsets V ⊂ U ⊂ X a morphism of
groups rV,U : P (U) −→ P (V ), the restriction map, also denoted
s 7→ s|V ,
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satisfying
(i) rU,U = idP (U), for each open subsets U ⊂ X,
(ii) rW,V ◦ rV,U = rW,U , for each inclusion of three open subsets

W ⊂ V ⊂ U ⊂ X.
A morphism of presheaves f : P −→ P ′ is the data of groups mor-

phisms f(U) : P (U) −→ P ′(U) which commute with the restriction
maps, that is, r′

V,U ◦ f(U) = f(V ) ◦ rV,U , for all V ⊂ U ⊂ X.
Examples 2.3. 1) Let M be an abelian group. The constant presheaf
of group M on X is the presheaf PAX defined by PAX(U) = M for
all open subsets U ⊂ X and rV,U = idM for V ⊂ U .
2) We let C0

X(U) be the space of continuous functions (with values in
C) on an open subset U ⊂ X. Then U 7→ C0

X(U) and the obvious
restriction maps define a presheaf C0

M . When X is a C∞-manifold we
define in the same way the presheaf of C∞-functions, denoted C∞

X .
3) Let X be a topological space endowed with a measure µ. We let L1

X

be the presheaf of integrable functions defined by L1
X(U) = {f : U −→ C;

f is measurable and
∫

U |f |dµ <∞}.
Definition 2.4. Let X be a topological space. A sheaf F of abelian
groups on X is a presheaf satisfying

(i) separation: for any open subset U ⊂ X, any open covering
U = ⋃

i∈I Ui and any section s ∈ F (U), if s|Ui
= 0 for all i ∈ I,

then s = 0,
(ii) gluing: for any open subset U ⊂ X, any open covering U =⋃

i∈I Ui and any collection of sections si ∈ F (Ui), which are
compatible in the sense that si|Ui∩Uj

= sj|Ui∩Uj
for all i, j ∈ I,

there exists a section s ∈ F (U) such that s|Ui
= si for all i ∈ I.

A morphism of sheaves f : F −→ F ′ is a morphism of the underlying
presheaves. We denote by Psh(X) (resp. Sh(X)) the category of
presheaves (resp. sheaves) on X.
Remark 2.5. In Definition 2.2 it is allowed to take the empty family I
as the set of indices for a covering. It turns out that it makes sense to
ask what it the union of an arbitrary family ⋃

i∈I Xi (below we recall the
definition of a coproduct of two objects; we can extend to an arbitrary
family) even when I = ∅: the result is ⋃

i∈∅ Xi = ∅. (What is the
product of an empty family of sets, ∏

i∈∅ Xi =?)
Now we can apply the separation axiom with the covering ∅ = ⋃

i∈∅ Ui

of the empty set. Take s ∈ F (∅). The condition “s|Ui
= 0 for all i ∈ I”

is automatically satisfied since there is nothing to check. So we obtain
the conclusion s = 0.
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(If you don’t like the argument, you can add F (∅) = 0 in the axioms
of sheaves.)
Examples 2.6. The presheaves C0

X and C∞
X are sheaves. The presheaves

PAX and L1
X are not.

Given a presheaf P there exists a “closest possible” sheaf correspond-
ing to P , called the associated sheaf of P and denoted by P a. We will
see a more precise definition when we introduce adjoint functors. For
the moment we give an ad hoc definition of P a.
Definition 2.7. Let X be a topological space and let P ∈ Psh(X).
For a given point x ∈ X we set Px = lim−→x∈U

P (U), where U runs over
the open neighborhoods of x. In other words Px = (⊔

x∈U P (U))/ ∼
where ∼ is the equivalence relation defined for s ∈ P (U), t ∈ P (V ) by
s ∼ t if there exists a third neighborhood of x, W ⊂ U ∩ V , such that
s|W = t|W .

The group Px is called the stalk of P at x. For s ∈ P (U) its image
in Px is denoted sx and called the germ of s at x.

For a morphism u : P −→ Q in Psh(X) we denote by ux : Px −→ Qx

the induced morphism on the stalks.
Lemma 2.8. Let F be a sheaf on X and s ∈ F (U) for some open
subset U . Then s = 0 if and only if sx = 0 for all x ∈ U .
Proposition 2.9. Let u : F −→ G be a morphism in Sh(X). Then u is
an isomorphism if and only if ux is an isomorphism for all x ∈ X.
Proof. See for example [2] Prop. 2.2.2. □

Proposition 2.10. Let X be a topological space and let P ∈ Psh(X).
There exist a sheaf P a and a morphism of presheaves u : P −→ P a such
that ux is an isomorphism, for each x ∈ X. Moreover the pair (P a, u)
is unique up to isomorphism.
Proof. See for example [2] Prop. 2.2.3. We only give a definition of P a.

For an open set U ⊂ X we set P a(U) = {s = (s(x))x∈U ∈
∏

x∈U Px;
for all x ∈ U there exists a neighborhood V of x in U and t ∈ P (V )
such that s(y) = ty for all y ∈ V }. □

Examples 2.11. 1) Let A be an abelian group. The constant sheaf
of group A on X is the sheaf associated with PAX , denoted AX =
(PAX)a. We have AX(U) = {f : U −→ A; f is locally constant}, where
a function f is said locally constant if for any x ∈ U there exists a
neighborhood V of x in U such that f |V is a constant function. The
restriction maps are induced by the inclusions of connected compo-
nents.
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2) Let X be a topological space endowed with a measure µ. Then
(L1

X)a = L1,loc
X where L1,loc

X (U) = {f : U −→ C; f is measurable and
locally integrable }.

2.2. Additive categories.

Definition 2.12. Let C be a category and X, Y ∈ Ob(C). A product of
X and Y is an object Z together with morphisms p : Z −→ X, q : Z −→ Y
such that, for any other Z ′ and p′ : Z ′ −→ X, q′ : Z ′ −→ Y there exists a
unique f : Z ′ −→ Z such that p′ = p ◦ f and q′ = q ◦ f :

Z
p

}}

q

  
X Y

Z ′.
p′

aa

q′

>>f

OO

If it exists, the product is unique up to a unique isomorphism. It is
denoted X × Y .

We can rephrase the definition of the product by
Hom(Z ′, X × Y ) = Hom(Z ′, X)× Hom(Z ′, Y ), for all Z ′ ∈ Ob(C),
where the second × is the product in the category of sets.

A coproduct (sometimes called sum) is defined by reversing the ar-
rows. It is denoted X ⊔ Y (or X ⊕ Y )

X ⊔ Y

f

��

X

p′
##

p
;;

Y

q′
{{

q
cc

Z ′

We have Hom(X ⊔ Y, Z ′) = Hom(X,Z ′)× Hom(Y, Z ′).

An object X in a category C is called initial if Hom(X, Y ) consists
of a single element for all Y ∈ Ob(C). It is called final if Hom(Y,X)
consists of a single element for all Y ∈ Ob(C). It is called a zero object
if it is both final and initial. Final, initial or zero objects are unique
up to a unique isomorphism, if they exist.

A zero object is usually denoted by 0. If it exists, we also denote
by 0 ∈ Hom(X, Y ), for any objects X, Y , the morphism given by the
composition X −→ 0 −→ Y . We remark that 0 ◦ f = f ◦ 0 = 0 for any f .
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Definition 2.13. A category C is additive if
(i) it has a zero object,
(ii) for any X, Y ∈ Ob(C) the product X × Y and the coproduct

X ⊔ Y exist,
(iii) for any X, Y ∈ Ob(C) the morphism group Hom(X, Y ) has a

structure of abelian group and the composition is bilinear.

We remark that (i) and (ii) are properties whereas (iii) is a priori
an additional structure. In fact we can prove that the addition law
on Hom(X, Y ) is determined by the properties (i) and (ii) (see for
example [3] Thm. 8.2.14).

Let C be additive and X, Y objects of C. By the definitions of product
and coproduct we have natural maps pX : X × Y −→ X, iX : X −→
X ⊔ Y , and similarly pY , iY . Using the additive structure we define
u = iX ◦ pX + iY ◦ pY : X × Y −→ X ⊔ Y .

We define p′
X : X ⊔ Y −→ X corresponding to (idX , 0) ∈ Hom(X ⊔

Y,X) ≃ Hom(X,X)×Hom(Y,X). We define p′
Y in the same way. Then

there exists a unique v : X ⊔ Y −→ X × Y corresponding to (p′
X , p

′
Y ) ∈

Hom(X ⊔ Y,X)× Hom(X ⊔ Y, Y ).

Lemma 2.14. Let C be an additive category. Then for any X, Y ∈
Ob(C) the natural morphism u : X × Y −→ X ⊔ Y is an isomorphism
with inverse v.

This allows us to identify X ⊔ Y and X × Y . In this situation they
are usually denoted X ⊕ Y .

Definition 2.15. Let C be an additive category and let f : X −→ Y
be a morphism in C. A kernel of f is a morphism i : K −→ X such
that f ◦ i = 0 and such that, for any morphism i′ : K ′ −→ X satisfying
f ◦ i′ = 0 there exists a unique j : K ′ −→ K such that i′ = i ◦ j. If
the kernel exists, it is unique up to a unique isomorphism and we set
ker f = K.

A cokernel of f is a kernel in the opposite category. It is denoted
coker f .

This is visualized by the diagrams:

K ′

j
��

i′

%%

0

**ker f
i

// X
f

// Y

C ′

X
f

//

0

44

Y q
//

q′

88

coker f

p

OO
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We can also rephrase the definitions by, for all Z ∈ Ob(C):
Hom(Z, ker(f)) ≃ ker(φf : Hom(Z,X) −→ Hom(Z, Y )),

Hom(coker(f), Z) ≃ ker(ψf : Hom(Y, Z) −→ Hom(X,Z)),
with φf (u) = f ◦ u, ψf (u) = u ◦ f .
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2.3. Exercises.
Exercise 2.16. Inductive limit (also called “colimit”). We give
a definition in the special case of a filtrant indexing set. Let (I,≤) be
an ordered set which is filtrant, which means: for any i, j ∈ I there
exists k ∈ I such that i ≤ k and j ≤ k. Typical examples are I = N
and, for a topological space X and a point x ∈ X, I is the set of open
neighborhoods of x.

Let {Ei, uji} be an inductive system of sets indexed by I, which
means: uji is a map uji : Ei −→ Ej for any i ≤ j such that uii = idEi

and ukj ◦ uji = uki when i ≤ j ≤ k. Then
lim−→
i∈I

Ei =
⊔
i∈I

Ei/ ∼,

where ∼ is the equivalence relation defined by xi ∈ Ei ∼ xj ∈ Ej

if there exists k with i, j ≤ k and uki(xi) = ukj(xj). This set comes
with natural maps ui : Ei −→ lim−→i∈I Ei induced by the inclusion of Ei

in ⊔
Ek. We remark that any element of lim−→i∈I Ei is represented by an

element xi0 ∈ Ei0 for some i0 ∈ I.
(1) Check that, if the Ei are groups and the uji are group morphisms,

then lim−→i∈I Ei has a unique group structure such that the maps ui are
group morphisms.

(2) When I = N we only need to specify the maps ui+1,i. Take
Ei = Z for all i and ui+1,i(x) = 2x for all i. We write for short
lim−→i∈N

Ei = lim−→(Z 2·−→ Z 2·−→ Z 2·−→ · · · ). What is this colimit ? (Identify
with a subgroup of Q.)

(3) Give an example of an inductive system of groups indexed by N,
E0

u1,0−−→ E1 −→ · · · , where all groups and all maps ui+1,i are non zero,
but lim−→i∈N

Ei ≃ 0.
(4) Let P be a presheaf on a topological space X and x ∈ X. We

assume that x has a countable system of decreasing open neighborhoods
Bn. (TypicallyX = Rn andBn is the open ball with center x and radius
1/n.) Check that Px ≃ lim−→n∈N

P (Bn).

Exercise 2.17. Let X be a topological space, F a sheaf on X and
s ∈ F (U) for some open subset U . We assume that sx = 0 for some
x ∈ U . Prove that there exists an open neighborhood V ⊂ U of x such
that s|V = 0. Prove Lemma 2.8.

Prove Proposition 2.9: the difficult part is the reverse direction.
Check first that, for an open set U , the map F (U) −→ G(U) is in-
jective, using Lemma 2.8. For the surjectivity, we pick s ∈ G(U). For
a given x ∈ U we can find t ∈ Fx which is mapped to sx. This t is
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represented by some section t̃ ∈ F (V ). First prove that (t̃|W ) = s|W
for some small enough neighborhood W of x.

Exercise 2.18. Skyscraper sheaf. Let X be a separated topological
space, x ∈ X and A an abelian group. Prove that there exists a
unique sheaf, denoted A{x}, such that (A{x})y ≃ 0 for all y ̸= x and
(A{x})x ≃ A. Describe the sections A{x}(U).

Let F be a sheaf on X. Remark that there is a natural morphism
ix : F −→ (Fx){x} which induces the identity morphism on the stalk at
x.

We define the product F̃ = ∏
x∈X(Fx){x} by F̃ (U) = ∏

x∈X((Fx){x}(U)).
In fact we have F̃ (U) = ∏

x∈U Fx (which makes sense even if X is not
separated). The morphisms ix together, for all x ∈ X, give F −→ F̃ .
Prove that F is a subsheaf of F̃ in the sense that the map F (U) −→ F̃ (U)
is injective, for all open sets U .

Exercise 2.19. Let P be a presheaf. We assume that there exists a
sheaf F and a morphism u : P −→ F such that the induced morphisms
on the stalks ux : Px −→ Fx are all isomorphisms (as in Proposition 2.10).
Define F̃ as in Exercise 2.18. Deduce from this exercise that F (U) is
a subgroup of ∏

x∈U Px, for any open subset U . Then check that F (U)
must be as described in the proof of Proposition 2.10.

Exercise 2.20. A morphism f : X −→ Y in a category C is called a
monomorphism if, for all W ∈ Ob(C) and all morphisms g, h : W −→ X
in C, the equality f ◦ g = f ◦ h implies g = h (in other words, the map
HomC(W,X) −→ HomC(W,Y ), g 7→ f ◦ g, is injective).

If C is an additive category, prove that f is an monomorphism if and
only if the kernel of f exists and is 0.

Define the dual notion of epimorphism and prove that f is an epi-
morphism if and only if coker f ≃ 0.

Exercise 2.21. Let C be an additive category and let f : X −→ Y be a
morphism in C. We assume that ker f exists. Prove that the morphism
i : ker f −→ X is a monomorphism.

Dually, if f has a cokernel, Y −→ coker f is an epimorphism.
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2.4. Abelian categories.
Lemma 2.22. Let C be an additive category and let f : X −→ Y be
a morphism which admits a kernel ker f i−→ X and a cokernel Y q−→
coker f . We also assume that i has a cokernel (it is called the coimage
of f , denoted X

q′
−→ coim f) and that q has a kernel (it is called the

image of f , denoted im f
i′
−→ Y ). Then there exists a unique morphism

a : coim f −→ im f such that f = i′ ◦ a ◦ q′.
ker f

i &&

coker f

X
f //

q′ ''

Y
q

77

coim f a
// im f

i′

99

Proof. The existence of a follows from the universal properties of ker
and coker. If we have another a′ making the diagram commute, then
a ◦ q′ = a′ ◦ q′ because i′ is a monomorphism. And then a = a′ because
q′ is an epimorphism. □

Definition 2.23. An abelian category C is an additive category such
that, for any morphism f : X −→ Y , the kernel and the cokernel of f
exist (hence also the image and the coimage) and the natural morphism
coim f −→ im f of Lemma 2.22 is an isomorphism.

The typical example is the category Ab of abelian groups. For a
group G the category G−Mod is abelian.
Example 2.24. Let k be a field and Vectfil be the category of filtered
vector spaces over k. The objects, denoted (V, F ·), are vector spaces V
together with sequences of subspaces · · ·F iV ⊂ F i+1V ⊂ F i+2V · · · ⊂
V where i ∈ Z such that V = ⋃

i∈N Vi. The morphisms from (V, F ·) to
(W,F ·) are linear maps u : V −→ W such that u(F iV ) ⊂ F iW .

The category Vectfil is an additive category with kernels and cok-
ernels. For u : (V, F ·) −→ (W,F ·), we can check that keru is the usual
keru with the filtration F i(keru) = ker(u|F iV ) and cokeru is the usual
cokeru with the filtration F i(cokeru) = F iW/(F iW ∩ im u).

We set V = k with two filtrations F i
1V = 0 for i ≤ 0, F i

1V = k for
i > 0 and F i

2V = F i+1
1 V . The identity map on V induces a morphism

u : (V, F ·
1) −→ (V, F ·

2). Then coim(u) = (V, F ·
1) ̸≃ im(u) = (V, F ·

2).
Lemma 2.25. Let f : X −→ Y be a morphism in an abelian category.
Then f is an isomorphism if and only if ker f ≃ 0 and coker f ≃ 0.
Notation 2.26. Let f : X −→ Y be a morphism in an abelian category
such that ker f ≃ 0. We often write Y/X := coker f .
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Lemma 2.27. Let C be an abelian category and let

X
u //

f
��

X ′

f ′

��
Y

v // Y ′

be a commutative diagram in C. Then there exist unique morphisms
keru −→ ker v and cokeru −→ coker v such that the following diagram
commutes

keru //

��

X
u //

f
��

X ′

f ′

��

// cokeru

��
ker v // Y

v // Y ′ // coker v.
Let X be a topological space.

Proposition 2.28. The category Psh(X) is abelian. Moreover, for
u : P −→ P ′ in Psh(X), we have, for any open subset U ⊂ X,

(keru)(U) ≃ ker(u(U) : P (U) −→ P ′(U)),
(cokeru)(U) ≃ coker(u(U) : P (U) −→ P ′(U)),

and, for all x ∈ X, (keru)x ≃ ker(ux) and (cokeru)x ≃ coker(ux).

Remark 2.29. Let C be a category and C ′ a full subcategory of C,
which means that Ob(C ′) is a subset of Ob(C) and that HomC′(X, Y ) =
HomC(X, Y ) for any X, Y ∈ C ′.

For X, Y ∈ C ′, if the product X × Y exists in C and belongs to C ′,
then it is the product of X and Y in C ′. A similar remark holds for the
coproduct, the kernel and the cokernel.

Proposition 2.30. The category Sh(X) is abelian. Moreover, for
u : F −→ F ′ in Sh(X), we have, denoting by ū the morphism u viewed
in Psh(X),

(a) ker ū is a sheaf and keru ≃ ker ū,
(b) cokeru ≃ (coker ū)a,
(c) for all x ∈ X, (keru)x ≃ ker(ux) and (cokeru)x ≃ coker(ux).

Let X f−→ Y
g−→ Z be a sequence of morphisms in an abelian category.

We assume that g ◦ f = 0. Then there exists a natural morphism
a : im f −→ ker g. We have ker a ≃ 0. We say that the sequence is exact
(at Y ) if this morphism is an isomorphism, that is, coker a ≃ 0. In
general we set

H(X f−→ Y
g−→ Z) := coker(im f −→ ker g)
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and call this object the cohomology of the sequence. A short sequence
0 −→ X

f−→ Y
g−→ Z −→ 0 is said exact if it is exact at X, Y and Z.

Lemma 2.31. Let X be a topological space. If a sequence F u−→ G
v−→ H

is exact in Psh(X), then the sequence Fx
ux−→ Gx

vx−→ Hx is exact for
each x ∈ X.

A sequence F u−→ G
v−→ H in Sh(X) is exact if and only if the sequence

Fx
ux−→ Gx

vx−→ Hx is exact for each x ∈ X.
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2.5. Exercises.
Exercise 2.32. Let X be a topological space, and Z ⊂ X a closed
subset. Let A be an abelian group. We define the presheaf PAX,Z on
X by PAX,Z(U) = 0 if Z ∩ U = ∅ and PAX,Z(U) = A if Z ∩ U ̸= ∅
with the restriction maps rV,U = idA if V ∩Z ̸= ∅ (otherwise rV,U must
be 0).

We set AX,Z = (PAX,Z)a. Using the construction of P a in the proof
of Proposition 2.10 check that AX,Z(U) = {f : U ∩ Z −→ A; f is lo-
cally constant}. (Here, locally constant means: any x ∈ U ∩ Z has a
neighborhood V (x) such that f |V (x) is constant.) In particular, if X is
locally connected, then AX,Z(U) ≃ Aπ0(Z∩U), where π0(Z∩U) is the set
of connected components of Z ∩ U . Note that, when X is not locally
connected, for example X = Q, this last description does not hold.

Check that (AX,Z)x ≃ A if x ∈ Z and (AX,Z)x ≃ 0 otherwise.
Exercise 2.33. In the previous exercise we could try to remove the
condition “Z is closed” but the result is more complicated. Set A′

X,Z =
(PAX,Z)a for a general Z. Describe A′

X,Z if we take (1) X = Rn, Z
an open ball in Rn (2) X = R, Z = R \ {0}. In particular the stalks
(A′

X,Z)x don’t satisfy the same relation as in the previous exercise.
Beware that we will use the notation AX,Z for more general Z but

only the case Z closed is given by the above construction.

Exercise 2.34. Let C be an abelian category and let X f−→ Y
g−→ Z

be two morphisms in C. We assume that ker(g ◦ f) = 0. Prove that
ker(f) = 0.
Exercise 2.35. Prove Lemma 2.27.

Let C be an abelian category. We consider the commutative diagram
in C

0 // X
f //

u
��

Y
g //

v
��

Z

w
��

0 // X ′ f ′
// Y ′ g′

// Z ′

and we assume that the rows are exact (at X, Y and X ′, Y ′). By
Lemma 2.27 this commutative diagram gives two morphisms keru f0−→
ker v g0−→ kerw. Prove that this sequence is exact at ker v.

Prove that the same is true when we start from

X
f //

u
��

Y
g //

v
��

Z

w
��

0 // X ′ f ′
// Y ′ g′

// Z ′



HOMOLOGICAL ALGEBRA AND SHEAF THEORY 17

where the first row is only exact at Y and the second only at X ′.

Exercise 2.36. Let C be a category. We define the category of mor-
phisms in C, say Mor(C), as the category whose objects are the mor-
phisms in C (that is an object is the data of X u−→ X ′) and the mor-
phisms are the commutative diagrams HomMor(C)((X u−→ X ′), (Y v−→
Y ′)) = {(f, f ′); f : X −→ Y , f ′ : X ′ −→ Y ′, v ◦ f = f ′ ◦u}. The composi-
tion is given termwise by the composition in C, that is, (g, g′)◦(f, f ′) =
(g ◦ f, g′ ◦ f ′).

We assume that C is abelian. Prove that Mor(C) is also abelian. (To
save time, you can admit that Mor(C) is additive and check only the
existence of kernels, cokernels and Definition 2.23 using Lemma 2.27.)

Exercise 2.37. We let OC ∈ Sh(C) be the sheaf of holomorphic func-
tions over C, that is, OC(U) = {f : U −→ C; f is holomorphic}. We let
O×

C be the sheaf of non vanishing holomorphic functions and we denote
by exp: OC −→ O×

C the morphism f 7→ exp(f). Prove that we have an
exact sequence 0 −→ ZC −→ OC

exp−−→ O×
C −→ 0 in Sh(C).

Prove that this sequence is not exact in Psh(C).

Exercise 2.38. (Variation on Exercise 2.37) We keep the notations of
Exercise 2.37 Let u : OC −→ OC be the derivation, that is, u(U)(f) = f ′

for f ∈ OC(U). What is keru, cokeru in Sh(C)? Prove that u is not
surjective in Psh(C).

Exercise 2.39. We keep the framework of Exercise 2.16. Let I be
a filtrant ordered set. Let {Ei, uji}, {Fi, vji} be inductive systems
indexed by I. We remark that lim−→i∈I Ei comes with maps πi : Ei −→
lim−→i∈I Ei (we use abusively the same notation for the Fi’s). We assume
to be given maps fi : Ei −→ Fi commuting with the uji, vji.

Check that these maps induce a unique map f : lim−→i∈I Ei −→ lim−→i∈I Fi

such that f ◦ πi = πi ◦ fi for all i.
Now we assume that our inductive systems are made of abelian

groups and all maps are additive. Then lim−→i∈I Ei is an abelian group.
We remark that uji maps ker(fi) to ker(fj) and we obtain an inductive
system {ker(fi), uji}. Check that lim−→i∈I ker(fi) ≃ ker(f).

In the same way check that lim−→i∈I coker(fi) ≃ coker(f).

Exercise 2.40. Let X be a topological space and Z ⊂ X a closed
subset. Let A be an abelian group. Recall the “constant sheaf on Z”
AX,Z , such that AX,Z(U) = {f : U ∩ Z −→ A; f is locally constant}.

Let Z ′ ⊂ Z be a closed subset. We define a restriction morphism
r : AX,Z −→ AX,Z′ by r(U)(f) = f |U∩Z′ (check that this is a sheaf
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morphism). For an open subset V ⊂ X we define
AX,U = ker(AX,X −→ AX,X\U).

Verify that (AX,U)x ≃

A if x ∈ U,
0 if x ̸∈ U.

We set F = AX,U ⊕AX,X\U . Check that Fx ≃ (AX,X)x for all x ∈ X.
We consider X = R, U = ]−∞, 0[ and Z = [0,+∞[. Prove that

Hom(AX,Z , AX,X) = 0.
With F as above, prove that F ̸≃ AX,X .
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3. Categories of complexes

Definition 3.1. Let C be an additive category. A complex (X ·, d·
X) in

C is a sequence of composable morphisms in C

· · · −→ X i di
X−→ X i+1 −→ · · ·

such that di+1 ◦ di = 0, for all i ∈ Z (we forget the subscripts when
there is no ambiguity). The morphisms di

X are called the differentials.
A morphism f from a complex (X ·, d·

X) to a complex (Y ·, d·
Y ) is

a sequence of morphisms f i : X i −→ Y i, i ∈ Z, commuting with the
differentials.

We denote by C(C) the category of complexes in C. A complex is
said bounded from below (resp. above) if X i ≃ 0 for i ≪ 0 (resp.
i≫ 0). It is bounded if it is bounded from below and from above. We
let C+(C), C−(C), Cb(C) be the corresponding categories.

We collect some facts about abelian categories. Any morphism
f : A −→ B in an abelian category factorizes as f = if ◦ pf , with
pf : A −→ im f , if : im f −→ B (see the diagram in Lemma 2.22 and
the fact that a in this diagram is an isomorphism by definition). More-
over pf is an epimorphism and if a monomorphism (see Exercises 2.20
and 2.21). Since if is a monomorphism, a morphism x : X −→ A satis-
fies pf ◦ x = 0 if and only if f ◦ x = 0. It follows that ker f ≃ ker pf .
Hence we have an exact sequence (as in Ab)

(3.1) 0 −→ ker f −→ A −→ im f −→ 0.

In the same way coker if ≃ coker f and we have an exact sequence

(3.2) 0 −→ im f −→ B −→ coker f −→ 0.

Now let g : B −→ C be another morphism such that g ◦ f = 0. Let
jg : ker g −→ B be the natural morphism. Then (g ◦ if ) ◦ pf = 0 and,
since pf is an epimorphism, g ◦ if = 0. We deduce a uniquely de-
fined morphism j : im f −→ ker g such that if = jg ◦ j. Since if is a
monomorphism, we see that j is also a monomorphism (check!). We
write im f ↪→ ker g ↪→ B and, since j is a monomorphism, we often use
the notation coker j = ker g/ im f .

Definition 3.2. Let C be an abelian category and let X = (X ·, d·
X) ∈

C(C). For i ∈ Z we define

Zi(X) = ker di
X , Bi(X) = im di−1

X ,

H i(X) = Zi(X)/Bi(X) = coker(Bi(X) −→ Zi(X))
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and we call H i(X) the ith cohomology of X. In the case of the category
of groups Zi(X) (resp. Bi(X)) is called the ith group of cocycles (resp.
boundaries).

For a morphisms of complexes f : X −→ Y we denote by Zi(f),
Bi(f), H i(f) the induced morphisms, which exist and are well-defined
by Lemma 2.27. Hence Zi, Bi, H i are functors from C(C) to C (see
Definition 4.1).

If C is abelian, then C(C) is also abelian. Moreover for a morphism
f : X −→ Y in C(C) the kernel satisfies (ker f)i = ker(f i) and the
differential di

ker f is the natural morphism ker(f i) −→ ker(f i+1) given by
Lemma 2.27. The same holds for the cokernel.

We will use several preliminary lemmas, which are not too difficult
to prove in Ab. We only indicate once the proof for a general abelian
category. For this the following notion is useful.

Definition 3.3. Let u : A −→ B, f : B′ −→ B be morphisms in an
abelian category C. We set A ×B B′ = ker(s : A ⊕ B′ −→ B), where
s = (u,−f). It comes with a commutative square

A×B B
′ B′

A B

u′

f ′ f

u

and is universal for this property (any C with maps to A and B′ making
a commutative square factorizes uniquely though A×B B

′). It is called
the fiber product of A and B′ over B.

When C = Mod(k) we have A ×B B′ = {(a, b′) ∈ A ⊕ B′; u(a) =
f(b′)}.

Let us define i : keru −→ A ⊕ B′ by i = (ju, 0) where ju is the
morphism keru −→ A. Then s ◦ i = 0 and i factorizes through a
uniquely defined morphism i′ : keru −→ A ×B B′. If q : A ⊕ B′ −→ B′

denotes the natural map, we have q ◦ i = 0, hence u′ ◦ i′ = 0 and i′

induces a morphism
(3.3) keru −→ keru′.

Since a morphism x : X −→ A such that u ◦ x = 0 factorizes uniquely
through keru, we deduce that x factorizes through x̃ : X −→ A ×B B′

such that f ′ ◦ x̃ = x.

Lemma 3.4. With the notations of Definition 3.3, the morphism (3.3)
is an isomorphism ker(u) ≃ ker(u′). Moreover, if coker(u) ≃ 0, then
coker(u′) ≃ 0.
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By symmetry of the definition, the same holds with f, f ′ instead of
u, u′.
Proof. Since f ◦u′ = f ′ ◦u, we have a natural morphism keru′ −→ keru
by Lemma 2.27. we can see that this is an inverse to (3.3).

Let us check the second assertion. We pick g : B′ −→ C such that
g ◦u′ = 0. By construction we have an exact sequence 0 −→ A×B B

′ −→
A × B′ s−→ B −→ 0 and the map u′ is induced by A × B′ q−→ B′. Since
g ◦ u′ = 0, we have a factorization of g ◦ q as follows

A×B′ B′

B C.

q

s g

h

Let i : A −→ A × B′ be the natural map. Then s ◦ i = u is an epimor-
phism. But h ◦ s ◦ i = g ◦ q ◦ i = g ◦ 0 = 0. Hence h = 0. Hence
g ◦ q = 0, and, since q is an epimorphism (check!), g = 0. □

Lemma 3.5. Let 0 −→ A
i−→ B

j−→ C be an exact sequence in an abelian
category and let f : A′ −→ A be a morphism. Then we have an exact
sequence 0 −→ coker(f) i′

−→ coker(i ◦ f) j′
−→ C.

Proof. The maps i′ and j′ are uniquely induced by i and j, by definition
of a cokernel. Let us check that the kernel of j′ is indeed coker(f).

Let us first assume that the category is Ab. We pick x ∈ coker(i◦f)
and lift it to x̃ ∈ B. Then j(x̃) = j′(x) = 0. Hence x̃ ∈ A and
x ∈ coker(f).

The general case is similar, using Lemma 3.4 (follow the argument
on Fig. 1). The element x is replaced by a morphism: We pick x : D −→
coker(i ◦ f) such that j′ ◦ x = 0. We cannot lift x to x̃ : D −→ B in
general. Instead we set D̃ = B ×coker(i◦f) D and consider the diagram

D̃ B C

D coker(i ◦ f) C

x̃

p

j

x j′

Then j ◦ x̃ = j′ ◦ x ◦ p = 0 and x̃ factorizes through ỹ : D̃ −→ A. The
morphism i ◦ f : A′ −→ B factorizes through g : A′ −→ D̃ by the remark
after (3.3) and Lemma 3.4 gives an exact sequence A′ g−→ D̃

p−→ D −→ 0.
Since x̃ ◦ g = i ◦ f and i is a monomorphism, we have ỹ ◦ g = f . Hence
(q ◦ ỹ) ◦ g = 0, with q : A −→ coker(f) the natural map. Hence q ◦ ỹ
factorizes through p and y : D −→ coker(f). We obtain i′ ◦ y = x (use
that p is an epimorphism).
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The uniqueness of y is proved along the same steps. We assume that
there exists z : D −→ coker(f) such that i′ ◦ z = 0 and we want to prove
that z = 0. We set D̂ = A×coker(f) D and consider the diagram

D̂ A B

D coker(f) coker(i ◦ f)

z̃

p

i

q q′

z i′

(Exercise: complete this diagram into a diagram like Fig. 1 to follow
the end of the proof.) Since q′ ◦ (i◦ z̃) = 0 the morphism i◦ z̃ factorizes
through ker(q′). Now ker(q′) = im(i ◦ f) (since we work in an abelian
category). Since i is a monomorphism we can also check that the
morphism im(f) −→ im(i ◦ f) is an isomorphism (exercise!). We deduce
that z̃ factorizes though im(f) = ker(q). Hence q ◦ z̃ = 0 = z ◦ p. Since
p is an epimorphism, we have z = 0, as required. □

A′

0 A B C

0 coker(f) coker(i ◦ f) C

D̃ 0

D

i◦f
f

g

i

q

j

i′ j′

x̃ỹ

p

xy

Figure 1. Diagram for the proof Lemma 3.5

Lemma 3.6. Let C be an abelian category and let X = (X ·, d·
X) ∈

C(C). Then we have the exact sequence

0 −→ H i(X) −→ coker(di−1
X ) −→ Zi+1(X) −→ H i+1(X) −→ 0.
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Proof. By definition of H i+1(X) we have the exact sequence X i
di

X−→
Zi+1(X) −→ H i+1(X) −→ 0. Since di

X ◦ di−1
X = 0, di

X factorizes through
coker(di−1

X ) and gives the end of the sequence.
We have the exact sequence 0 −→ Zi(X) −→ X i −→ Zi+1(X) and the

map di−1
X : X i−1 −→ X i induces c : X i−1 −→ Zi(X). By Lemma 3.5 we

deduce the exact sequence 0 −→ H i(X) −→ coker(di−1
X ) −→ Zi+1(X),

which concludes the proof. □

Here are two useful lemmas to deal with complexes and long coho-
mology sequences.

Lemma 3.7. Let C be an abelian category. We consider the commuta-
tive diagram in C

0 // X
f //

u
��

Y
g //

v
��

Z

w
��

0 // X ′ f ′
// Y ′ g′

// Z ′

and we assume that the rows are exact. Then this diagram induces
a canonical (in the sense detailed in Proposition 3.9) exact sequence
0 −→ keru −→ ker v −→ kerw.

Lemma 3.8 (The snake lemma – see [3] lem. 12.1.1). Let C be an
abelian category. We consider the commutative diagram in C

X
f //

u
��

Y
g //

v
��

Z //

w
��

0

0 // X ′ f ′
// Y ′ g′

// Z ′

and we assume that the rows are exact. Then this diagram induces a
canonical (in the sense detailed in Proposition 3.9) exact sequence

keru −→ ker v −→ kerw −→ cokeru −→ coker v −→ cokerw.

Proposition 3.9. Let C be an abelian category and let 0 −→ X
f−→ Y

g−→
Z −→ 0 be a short exact sequence in C(C). Then there exists a canonical
long exact sequence in C

· · · −→ Hn(X) Hn(f)−−−→ Hn(Y ) Hn(g)−−−→ Hn(Z) δn

−→ Hn+1(X)
Hn+1(f)−−−−−→ Hn+1(Y ) Hn+1(g)−−−−−→ Hn+1(Z) −→ · · · .
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Canonical means here: if we have a commutative diagram of short exact
sequences

0 // X
f //

u
��

Y
g //

v
��

Z //

w
��

0

0 // X ′ f ′
// Y ′ g′

// Z ′ // 0,

then all squares Hn(Z) δn
//

Hn(w)
��

Hn+1(X)

Hn+1(u)
��

Hn(Z ′) δ′n
// Hn+1(X ′)

commute.

Proof. For a given i, Lemma 3.7, applied with rows 0 −→ X i −→ Y i −→ Zi

and 0 −→ X i+1 −→ Y i+1 −→ Zi+1 and vertical morphisms di
•, gives the

exact sequence “E(i)”: 0 −→ Zi(X) −→ Zi(Y ) −→ Zi(Z). A dual version
of Lemma 3.7 would give the exact sequence “F (i)”: coker(di

X) −→
coker(di

Y ) −→ coker(di
Z) −→ 0.

We have morphisms coker di−1
• −→ Zi+1

• (see Lemma 3.6). Lemma 3.8,
applied with the rows F (i−1) and E(i+ 1), together with Lemma 3.6,
give the exact sequence of the proposition. □

Lemma 3.10 (The five lemma). Let C be an abelian category. We
consider the commutative diagram in C

A //

a
��

B //

b
��

C //

c
��

D //

d
��

E

e
��

A′ // B′ // C ′ // D′ // E ′.

We assume that the rows are exact and that a, b, d, e are isomorphisms.
Then c is also an isomorphism.

When C is the category of modules over a ring, the proofs of these
results are relatively easy: we can pick an element in an object and
follow its images or inverse images by the morphisms in the diagrams
(“diagram chasing”). For a general abelian category we can use the
Freyd-Mitchell embedding theorem (see [8] section 1.6) which says that
any abelian category is a full subcategory of a category of modules over
some ring. We can also give direct proofs using Lemma 3.4 and the
following one.

Lemma 3.11 (see [3] lem. 8.3.12). Let X f−→ Y
g−→ Z be morphisms in

an abelian category such that g ◦ f = 0. Then this sequence is exact
at Y if and only if, for any morphism h : S −→ Y such that g ◦ f = 0,
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there exists a commutative diagram

S ′ f ′
//

��

S //

h
��

0

��
X

f // Y
g // Z,

where the first row is exact.
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3.1. Exercises.

Exercise 3.12. Let f : A −→ B and g : B −→ C be morphisms in an
abelian category. Prove that there is a unique morphism h : im f −→
im(g ◦ f) making the diagram

A im f B

im(g ◦ f) C

h g

commute. Prove that h is an epimorphism. We assume now that g is
a monomorphism; prove that h is an isomorphism.
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4. Functors

Definition 4.1. Let C, C ′ be two categories. A functor F from C to
C ′ is the data of maps (also denoted by F ) F : Ob(C) −→ Ob(C ′) and
F : HomC(X, Y ) −→ HomC′(F (X), F (Y )), for all X, Y ∈ Ob(C), satisfy-
ing

(i) F (idX) = idF (X) for all X ∈ Ob(C),
(ii) F (f ◦ g) = F (f) ◦ F (g), for all composable morphisms f, g.

For two functors F : C −→ C ′ and G : C ′ −→ C ′′ we define the composi-
tion G◦F by (G◦F )(X) = G(F (X)) for X ∈ Ob(C) and (G◦F )(f) =
G(F (f)) for all morphisms f in C.

For a category C we define the opposite category Cop by Ob(Cop) =
Ob(C) and HomCop(X, Y ) := HomC(Y,X) for all X, Y ∈ Ob(C).

A contravariant functor from C to C ′ is a functor from Cop to C ′.
(Functors can be called covariant functors if we want to insist.)

Example 4.2. Let X be a topological space and let Op(X) be the
category with objects the open subsets of X and morphisms the inclu-
sions, that is, HomOp(X)(U, V ) is a set with one object if U ⊂ V and is
empty if U ̸⊂ V . There is only one possibility for the composition law.
Then a presheaf on X is a contravariant functor from Op(X) to Ab.

Definition 4.3. Let C, C ′ be two categories and let F,G be two functors
from C to C ′. A morphism of functors θ from F to G is the data of
morphisms θX : F (X) −→ G(X) for all X ∈ Ob(C) such that, for all
morphisms f : X −→ Y in C, the following diagram commutes

F (X) θX //

F (f)
��

G(X)
G(f)
��

F (Y )
θY

// G(Y ).

A functor F : C −→ C ′ between additive categories is additive if the
maps Hom(A,B) −→ Hom(F (A), F (B)), f 7→ F (f), are group mor-
phisms, for all A,B ∈ Mod(k).

An additive functor F : C −→ C ′ between abelian categories is exact
if it sends short exact sequences to short exact sequences. It is left
exact if, for any exact sequence 0 −→ A

f−→ B
g−→ C, the sequence

0 −→ F (A) F (f)−−→ F (B) F (g)−−→ F (C) is exact. It is right exact if, for any
exact sequence A f−→ B

g−→ C −→ 0, the sequence F (A) F (f)−−→ F (B) F (g)−−→
F (C) −→ 0 is exact.
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Example 4.4. Let X be a topological space and let U ⊂ X be open.
For F ∈ Sh(X) we denote by Γ(U ;F ) = F (U) the set of sections over
U . Then Γ(U ; ·) : Sh(X) −→ Ab is a left exact functor.

Example 4.5. Let C be an abelian category and let M ∈ Ob(C). Both
functors

Hom(M, ·) : C −→ C Hom(·,M) : Cop −→ C
X 7→ Hom(M,X) X 7→ Hom(X,M)

are left exact.

Definition 4.6. Let C be an abelian category and let P ∈ Ob(C). We
say that P is projective if the functor Hom(P, ·) is exact, that is, if for
any short exact sequence A −→ B −→ 0, the sequence Hom(P,A) −→
Hom(P,B) −→ 0 is exact. We say that C has enough projectives if
for any M ∈ Ob(C), there exist a projective object P and an exact
sequence P −→M −→ 0.

Let I ∈ Ob(C). We say that I is injective if the functor Hom(·, I)
is exact, that is, if for any short exact sequence 0 −→ A −→ B, the
sequence Hom(A, I) −→ Hom(B, I) −→ 0 is exact. We say that C has
enough injectives if for any M ∈ Ob(C), there exist an injective object
I and an exact sequence 0 −→M −→ I.

We will see that the category Mod(k) for a ring k has enough pro-
jectives and enough injectives. However the category Sh(X) has no
non-zero projectives in general, but it has enough injectives.

Let C be an abelian category and let M ∈ Ob(C). A left resolution
of M is a complex X = (X ·, d·

X) ∈ C(C) such that X i ≃ 0 for i > 0,
together with a morphism ε : X0 −→M such that the sequence

· · · −→ X−2 d−2
−−→ X−1 d−1

−−→ X0 ε−→M −→ 0

is exact. In particular H i(X) ≃ 0 for all i ̸= 0 and H0(X) ≃ M . A
resolution is called projective if all the X i’s are projective.

A right resolution is defined by reversing the arrows (hence we have
an exact sequence 0 −→ M

ε−→ X0 d0
−→ · · · ). It is called injective if all

the X i’s are injective.

Proposition 4.7. Let C be an abelian category. We assume that C
has enough projectives. Then any M ∈ Ob(C) has a projective (left)
resolution.

Theorem 4.8. Let F : C −→ C ′ be a right exact functor between abelian
categories. Let M ∈ C be an object which has a projective resolution



HOMOLOGICAL ALGEBRA AND SHEAF THEORY 29

· · · −→ P−2 d−2
−−→ P−1 d−1

−−→ P 0 ε−→M −→ 0. Then, for i ∈ N,

LiF (M) := H−i
(
· · · −→ F (P−2) F (d−2)−−−−→ F (P−1) F (d−1)−−−−→ F (P 0) −→ 0

)
is independent of the choice of the projective resolution.

If C has enough projectives, this defines a sequence of functors LiF : C −→
C ′, with the property: for any short exact sequence 0 −→ M ′ f−→ M

g−→
M ′′ −→ 0 in C, we have a long exact sequence in C ′

LiF (M ′) LiF (u)−−−−→ LiF (M) LiF (v)−−−−→ LiF (M ′′) δi

−→ Li−1F (M ′)
−→ · · · −→ L1F (M ′′) −→ F (M ′) −→ F (M) −→ F (M ′′) −→ 0.
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5. Exercises

Exercise 5.1. Let f : A −→ B, g : B −→ C be morphisms in an abelian
category. Prove that there exists a unique morphism f ′ : im(g ◦ f) −→
im(g) such that we have the commutative diagram

A im(g ◦ f) C

B im(g)

f f ′

Prove that f ′ is a monomorphism. Assume now that f is an epimor-
phism; prove that f ′ is an isomorphism.

Exercise 5.2. We prove Lemma 3.11: Let X f−→ Y
g−→ Z be morphisms

in an abelian category such that g ◦ f = 0. Then this sequence is exact
at Y if and only if, for any morphism h : S −→ Y such that g ◦ f = 0,
there exists a commutative diagram

S ′ f ′
//

��

S //

h
��

0

��
X

f // Y
g // Z,

where the first row is exact.
(i) Assume the sequence is exact and pick h as above. Then h factor-

izes through ker(g). Prove that S ′ = X×ker(g) S satisfies the condition.
(ii) We prove the opposite direction. Assume first the category is

Ab; what do you choose for S to prove the result? In general choose
the “same” object for S and use the above diagram to build an inverse
to the natural morphism im(f) −→ ker(g). Hint:

ker(f ′) // S ′ f ′
//

��

S //

h

��}}

0

��
im(f) // Y

g // Z,

Exercise 5.3. In Ab prove that Z is projective. More generally, for
any family I, the free abelian group Z(I) is projective. Deduce that Ab
has enough projectives.
Exercise 5.4. Let k be a field and Vect the category of k-vector
spaces. Prove that any object in Vect is projective and injective.
Exercise 5.5. We use the notations of Exercise 2.36: C is an abelian
category and we consider the category Mor(C) of morphisms in C. We
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have seen that it is abelian. Prove that ker : Mor(C) −→ C, (X u−→
X ′) 7→ ker(u) is a left exact functor. Give an example (with C = Ab)
to see that it is not right exact in general.
Exercise 5.6. When C = Vect (we fix a field), check that the objects
(X id−→ X) and (X 0−→ 0) are injective in Mor(C). Similarly, the objects
(X id−→ X) and (0 0−→ X) are projective.

As in the previous exercise coker : Mor(C) −→ C is a right exact func-
tor. Compute Li coker.
Exercise 5.7. Let X be a topological space and F ∈ Sh(X). Let Fx

be the germ at x and let F x be the corresponding skyscrapper sheaf,
that is, F x = (Fx){x}. We have a natural morphism ix : F −→ F x such
that (ix)x = idFx .

We set F̃ = ∏
x∈X F x. Describe the section F̃ (U) for an open set U .

Prove that the morphism i : F −→ F̃ induced by the ix is a monomor-
phism.
Exercise 5.8. Let C be an abelian category. Let Ia, a ∈ A, be injective
objects in C. We assume that ∏

a∈A Ia exists in C. Prove that ∏
a∈A Ia

is injective.
Exercise 5.9. We choose a field k. We defines Shk(X) exactly like
Sh(X) replacing everywhere “abelian group” by “k-vector space” and
“additive map” by “linear map”. Let A be a k-vector space and x ∈ X.
Prove that the skyscrapper sheaf A{x} is injective. Deduce that the
object F̃ above is injective.
Exercise 5.10. Let X be a topological space and Z ⊂ X a closed
subset. Let A be a group. We already defined AZ by AZ(U) = {f : Z∩
U −→ A, f is locally constant}. Let W ⊂ X be locally closed, which
means that W is difference of two closed subsets W = Z \Y for Y ⊂ Z.
We have a natural morphism AZ −→ AY . We set AW = ker(AZ −→ AY ).

Check that AW is independent of Y , Z. Hint: we can reduce to the
case Z = W and Y = W \W .

Prove that (AW )x = A if x ∈ W and (AW )x = 0 if x ̸∈ W .
For X = R and W = [0, 1[, describe AW (]a, b[) according to the

positions of a, b with respect to 0, 1.
Exercise 5.11. Let W ⊂ W ′ ⊂ X be locally closed subsets. Prove
that

if W is closed in W ′, there is a natural morphism r : AW ′ −→ AW such
that rx is an isomorphism when x ∈ W ,

if W is open in W ′, there is a natural morphism i : AW −→ AW ′ such
that ix is an isomorphism when x ∈ W .
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Prove that we obtain an exact sequence 0 −→ AW ′\W −→ AW ′ −→
AW −→ 0.

Exercise 5.12. We consider sheaves on R. Let A be an abelian group.
Prove that Hom(A[0,1], AR) = 0 and Hom(AR, A]0,1[) = 0.

Exercise 5.13. Let X be a topological space and let B = {Bi}i∈I a
basis of open subsets. Let ShB(X) be the category of “sheaves over
B” where a sheaf F over B is the same data as a sheaf but we only
consider the F (Bi) and the restriction maps F (Bi) −→ F (Bj), i, j ∈ I;
the separation condition is the same and the gluing condition becomes:
if Bi0 = ⋃

k∈K Bk and sk ∈ F (Bk) satisfy sk|Bk
= sl|Bl

for all k, l ∈ K
and i ∈ I, then there exists s ∈ F (Bi0) such that s|Bk

= sk. The
morphisms are also defined only for the Bi’s.

We have an obvious forget functor For: Sh(X) −→ ShB(X). We
want to prove that it is an equivalence.

We construct an inverse functor. Let F ∈ ShB(X). We want G ∈
Sh(X) such that G(Bi) = F (Bi) for all i ∈ I. Let U ⊂ X be an open
subset and write U = ⋃

k∈K Bk for some K ⊂ I. We set
GK(U) = {(sk)k∈K ; sk ∈ F (Bk), sk|Bi

= sl|Bi
for all k, l ∈ K, i ∈ I}.

We must have G(U) = GK(U), but we need to check that GK(U) is
independent of the covering K. We first assume that we have another
covering L refining K, which means that, for each l ∈ L there exists
k ∈ K such that Bl ⊂ Bk.

Let s = (sk)k∈K in GK(U) be given and i ∈ I such that Bi ⊂ Bk for
some k ∈ K. Then sk|Bi

is independent of k (that is, if Bi ⊂ Bl for
another l ∈ K then sk|Bi

= sl|Bi
). Hence we may define s|Bi

:= sk|Bi
.

Using these notations we define rL
K : GK(U) −→ GL(U) by s 7→ (sl)l∈L,

where sl = s|Bl
. Check that rL

K is well-defined and is an isomorphism.
Check that, for two coverings U = ⋃

k∈K Bk and U = ⋃
k∈K′ Bk there

exists a third covering L which refines both K and K ′. We then have
canonical isomorphisms

GK(U) ∼−→ GL(U) ∼←− GK′(U)
which proves that GK(U) does not depend on K. We set G(U) =
GK(U), for any covering K. We have in particular G(Bi) = F (Bi) for
all i ∈ I.

Check that G is a sheaf.
The construction F −→ G then gives a functor ShB(X) −→ Sh(X).

Check that it is an inverse to Sh(X) −→ ShB(X).
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6. More on functors and resolutions

Definition 6.1. Let F : C −→ C ′ be a functor. We say that F is
full (resp. faithful, fully faithful) if the maps F : HomC(X, Y ) −→
HomC′(F (X), F (Y )) are surjective (resp. injective, bijective), for all
X, Y ∈ Ob(C).

We say that F is essentially surjective if for each Y ∈ Ob(C ′) there
exist X ∈ Ob(C) and an isomorphism F (X) ≃ Y .

We say that F is an equivalence of categories if there exist a functor
G : C ′ −→ C and isomorphisms of functors idC ≃ G◦F and idC′ ≃ F ◦G.
We then write F : C ∼−→ C ′ and we say that F and G are quasi-inverse
to each other.

For example the category of finite dimensional vector spaces over
some field k, say Vectf (k), is equivalent to its full subcategory Mat(k)
with Ob(Mat(k)) = {kn; n ∈ N} (where full means that the Hom sets
are the same: HomMat(k)(kn,km) = HomVectf (k)(kn,km) = Mat(m ×
n,k)).

Proposition 6.2. A functor F : C −→ C ′ is an equivalence of categories
if and only if it is fully faithful and essentially surjective.

Let C be an abelian category and let M ∈ Ob(C). A left resolution
of M is a complex X = (X ·, d·

X) ∈ C(C) such that X i ≃ 0 for i > 0,
together with a morphism ε : X0 −→M such that the sequence

· · · −→ X−2 d−2
−−→ X−1 d−1

−−→ X0 ε−→M −→ 0
is exact. In particular H i(X) ≃ 0 for all i ̸= 0 and H0(X) ≃ M . A
resolution is called projective if all the X i’s are projective.

A right resolution is defined by reversing the arrows (hence we have
an exact sequence 0 −→ M

ε−→ X0 d0
−→ · · · ). It is called injective if all

the X i’s are injective.

Proposition 6.3. Let C be an abelian category. We assume that C
has enough projectives. Then any M ∈ Ob(C) has a projective (left)
resolution. Similarly, when we have enough injectives, we have injective
right resolutions.

Proof. By definition of “enough projectives” there exists an epimor-
phism P 0 ε−→ M with P 0 projective. We set M1 = ker ε i1

−→ P 0 and
choose an epimorphism P−1 e1

−→ M1. We set d−1 = i1 ◦ e1. We then
have the exact sequence P−1 d−1

−−→ P 0 ε−→M −→ 0. We set M2 = ker d−1

and proceed with M2 as with M1. We go on and obtain the resolution
by induction. □
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The next proposition says that a projective resolution is unique up
to homotopy in the following sense.

Definition 6.4. Let C be an additive category and let P = (P ·, d·
P ),

Q = (Q·, d·
Q) ∈ C(C). We say that two morphisms f, g : P −→ Q in C(C)

are homotopic if there exists a family of morphisms si : P i −→ Qi−1,
i ∈ Z, such that

fn − gn = dn−1
Q ◦ sn + sn+1 ◦ dn

P ,

for all n ∈ Z.

The homotopy relation is compatible with the additive structure of
Hom(P,Q) and with the composition in C(C). It follows that we can
define a category of complexes up to homotopy as follows.

Definition 6.5. Let C be an additive category. We define a category
K(C) by Ob(K(C)) = Ob(C(C)) and

HomK(C)(P,Q) = HomC(C)(P,Q)/ ∼h,

where ∼h is the homotopy relation on HomC(C)(P,Q). Then K(C) is
an additive category.

We have an obvious functor Ob(K(C)) −→ Ob(C(C)) which is the
identity on objects and the quotient map on the morphisms.

Proposition 6.6. Let C be an abelian category, let M ∈ Ob(C) and
let P = (P ·, d·

P ) ∈ C(C) together with ε : P 0 −→ M be a projective
resolution of M . Let f ′ : M −→ N be a morphism in C. Let X =
(X ·, d·

X) ∈ C(C) together with η : X0 −→ N be a left resolution of N .
Then there exists a morphism f : P −→ X in C(C) lifting f ′ in the sense
that f ′ ◦ ε = η ◦ f 0. In other words there exists a commutative diagram

· · · // P−2 d−2
P //

f−2

��

P−1 d−1
P //

f−1

��

P 0 ε //

f0

��

M

f ′

��
· · · // X−2

d−2
X

// X−1
d−1

X

// X0
η
// N.

Moreover, if g : P −→ X is another morphism lifting f ′, then f and g
are homotopic.

Proof. (i) The existence of f 0 follows from the facts that η is an epi-
morphism and P 0 is projective. Then we remark that f 0◦d−1

P factorizes
through ker η = im d−1

X . Hence we obtain f−1 in the same way, using
the facts that d−1

X is an epimorphism to its image and P−1 is projective.
We obtain all fk in this way inductively.
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(ii) We set hk = fk − gk. We have the commutative diagram

· · · // P−2 d−2
P //

h−2
��

P−1 d−1
P //

h−1
��

P 0 ε //

h0
��

M

0
��

· · · // X−2
d−2

X

// X−1
d−1

X

// X0
η
// N.

Since η ◦ h0 = 0, h0 factorizes through i0 : P 0 −→ ker η = im d−1
X . Since

X−1 −→ im d−1
X and P 0 is projective, we can lift i0 to s0 : P 0 −→ X−1.

We then have h0 = d−1
X ◦ s0.

We define h′−1 = h−1−s0◦d−1
P . Then d−1

X ◦h′−1 = 0 and we can apply
the same procedure to find s−1 : P−1 −→ X−2 such that h′−1 = d−2

X ◦s−1.
Hence h−1 = s0 ◦ d−1

P + d−2
X ◦ s−1. Now we go on inductively. □

We obtain the injective versions of Propositions 6.3 and 6.6 by re-
versing the arrows.
Definition 6.7. Let F : C −→ C ′ be an additive functor between ad-
ditive categories. We define C(F ) : C(C) −→ C(C ′) by F (X ·, d·

X) =
(F (X ·), F (d·

X)). Then C(F ) is additive and compatible with homo-
topy. It induces an additive functor K(F ) : K(C) −→ K(C ′).

It is easy to check that two homotopic morphisms of complexes in-
duce the same morphism on homology (when C is abelian):
Lemma 6.8. Let C be an abelian category and let f : X −→ Y be a
morphism in C(C). We assume that f is homotopic to the zero mor-
phism. Then H i(f) : H i(X) −→ H i(Y ) is zero, for all i ∈ Z. In partic-
ular the homology functors H i : C(C) −→ C induce well-defined functors
H i : K(C) −→ C.
Definition 6.9. Let F : C −→ C ′ be a right exact functor between two
abelian categories. We assume that C has enough projectives. For
M ∈ C and i ∈ Z we define LiF (M) = H i(K(F )(P )), where P is any
projective resolution of M .

The fact that LiF (M) is well-defined up to a unique isomorphism
follows from Proposition 6.6. The right exactness of F ensures that

L0F (M) ≃ F (M), for all M ∈ Ob(C).
To see that LiF is a functor we give a slightly different version of
Propositions 6.3 and 6.6.

Let Kpr(C) be the full subcategory of K(C) formed by the complexes
P = (P ·, d·

P ) such that P i = 0 for i > 0, H i(P ) ≃ 0 for all i ̸= 0 and
P i is projective for each i ≤ 0 (“pr” stands for “projective resolution”).
Then Propositions 6.3 and 6.6 give
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Proposition 6.10. The functor H0 : Kpr(C) −→ C is essentially sur-
jective and fully faithful. In other words, it is an equivalence and we
can find a quasi-inverse respr : C −→ Kpr(C).

Now we choose respr as in the proposition and we can rephrase Def-
inition 6.9 by LiF (M) = H i(K(F )(respr(M))), which shows that LiF
is a functor.

Different choices of inverse toH0 : Kpr(C) −→ C give different functors
respr but they are (canonically) isomorphic by the following remark.

Remark 6.11. Let F : C −→ D be a functor between two categories
which is an equivalence of categories. Let G1, G2 : D −→ C be inverses
of F , together with isomorphisms of functors εi : F ◦Gi

∼−→ idD. Then
there exists a unique isomorphism of functors ε : G1 ∼−→ G2 such that
F ◦ ε = ε2 ◦ ε−1

1 , where F ◦ ε denotes abusively the morphism given by
(F ◦ ε)(X) = F (ε(X)), for X ∈ C.

Indeed, we must define ε(Y ) : G1(Y ) −→ G2(Y ), Y ∈ D, as the in-
verse image of ε2(Y )◦ε−1

1 (Y ) by the bijection Hom(G1(Y ), G2(Y )) ∼−→
Hom(F ◦ G1(Y ), F ◦ G2(Y )), and we can check that this gives an iso-
morphism of functors.

Proposition 6.12. Let 0 −→ X
f−→ Y

g−→ Z −→ 0 be a short exact
sequence in C. Let P = (P ·, d·

P ) ∈ C(C) together with ε : P 0 −→ X be
a projective resolution of X. Let R = (R·, d·

R) ∈ C(C) together with
γ : R0 −→ Z be a projective resolution of Z. We set Qk = P k⊕Rk. Then
we can find a differential d·

Q and η : Q0 −→ Y turning (Q·, d·
Q) into a

projective resolution of Y such that the natural morphisms ik : P k −→
Qk, pk : Qk −→ Rk give a commutative diagram of resolutions:

· · · // P−2 d−2
P //

i−2
��

P−1 d−1
P //

i−1
��

P 0 ε //

i0
��

X

f

��
· · · // Q−2

d−2
Q //

p−2

��

Q−1
d−1

Q //

p−1

��

Q0 γ //

p0

��

Y

g

��
· · · // R−2

d−2
R

// R−1
d−1

R

// R0
η

// Z.

Proof. Since g is an epimorphism and R0 is projective, we can factorize
g through η′ : R0 −→ Y . Then γ = (f ◦ ε, η′) : Q0 = P 0 ⊕R0 −→ Y gives
the commutative squares. Moreover γ is an epimorphism: if a : Y −→M
is such that a ◦ γ = 0, then a ◦ f ◦ ε = 0, hence a ◦ f = 0 (because ε
is an epimorphism), hence a factorizes through g by a′ : Z −→ M ; we
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then obtain a′ ◦ η = 0, hence a′ = 0 (since η is an epimorphism), hence
a = 0.

The snake lemma gives the exact sequence 0 −→ ker ε −→ ker γ −→
ker η −→ 0. We replace the initial exact sequence by this one and
P 0, Q0, R0 by P−1, Q−1, R−1. The same argument gives an epimor-
phism e−1 : Q−1 −→ ker γ making commutative squares. We let d−1

Q be
the composition of e−1 and the morphism ker γ −→ Q0.

Now we go on by induction. □

Theorem 6.13. Let F : C −→ C ′ be a right exact functor between two
abelian categories. We assume that C has enough projectives. Let 0 −→
X

f−→ Y
g−→ Z −→ 0 be a short exact sequence in C. Then there exists a

canonical long exact sequence in C ′

· · · −→ LnF (X) LnF (f)−−−−→ LnF (Y ) LnF (g)−−−−→ LnF (Z) δn

−→ Ln+1F (X)
Ln+1F (f)−−−−−→ Ln+1F (Y ) Ln+1F (g)−−−−−→ Ln+1F (Z) −→ · · · .

More precisely, if we have a commutative diagram of short exact se-
quences

0 // X
f //

u
��

Y
g //

v
��

Z //

w
��

0

0 // X ′ f ′
// Y ′ g′

// Z ′ // 0,

then all squares LnF (Z) δn
//

LnF (w)
��

Ln+1F (X)
LnF (u)
��

LnF (Z ′) δ′n
// Ln+1F (X ′)

commute.

Proof. We use the result and the notations of Proposition 6.12. The
morphisms i· : P · −→ Q· and p· : Q· −→ R· in C(C) give the exact se-
quence 0 −→ P · −→ Q· −→ R· −→ 0. Indeed this is a general fact (even
in an additive category) that the natural morphism P i −→ P i ⊕Ri is a
monomorphism with cokernel Ri. Now we apply the functor C(F ) to
the sequence and obtain a sequence in C(C ′): 0 −→ F (P ·) −→ F (Q·) −→
F (R·) −→ 0. Since F is additive, we have F (Qi) ≃ F (P i)⊕ F (Ri) and
the morphisms still are the natural morphisms from/to a product/sum.
Hence this sequence in C(C ′) is alos exact. Now the theorem follows
from Proposition 3.9. □

Actually we only used the additivity of F in the proof of the theorem.
The hypothesis that F is right exact is needed to make the connection
between F and L0F :
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Lemma 6.14. With the hypothesis of Theorem 6.13 we have L0F ≃ F .
Proof. Let X ∈ C be given with a projective resolution P · together
with ε : P 0 −→ X such that · · · −→ P−1 −→ P 0 −→ X −→ 0 is exact.
The hypothesis says that F (P−1) −→ F (P 0) −→ F (X) −→ 0 is exact,
which means F (X) ≃ coker(F (d−1

P )). On the other hand H0(· · · −→
F (P−1) −→ F (P 0) −→ 0) ≃ coker(F (d−1

P )) by definition, which gives the
result. □

Definition 6.9, Proposition 6.10 and Theorem 6.13 have analogs for
left exact functors in the case where C has enough injectives. In par-
ticular we can define Kir(C) to be the full subcategory of K(C) formed
by the complexes I = (I ·, d·

I) such that I i = 0 for i < 0, H i(I) ≃ 0
for all i ̸= 0 and I i is injective for each i ≥ 0 (“ir” stands for “injec-
tive resolution”). Then H0 : Kir(C) −→ C is essentially surjective and
fully faithful as in Proposition 6.10 and we can find a quasi-inverse
resir : C −→ Kir(C). If F : C −→ C ′ is a left exact functor, we define
RiF (M) = H i(K(F )(resir(M))). Since F is left exact, we can see that
R0F = F . We then have an analog of Theorem 6.13 by replacing all
Ln by Rn.
Example 6.15. Let G be a group and F = (−)G : G −Mod −→ Ab
the functor of coinvariants. We have seen that it is right exact. Let us
compute LiF (Z), where Z is the trivial representation, whenG = Z/nZ
is a finite cyclic group.

We first define the group ring of G, for any group G. Let Z[G] be the
free abelian group generated by the set G, which means Z[G] = Z(G),
or, Z[G] = {∑g∈G ngeg}, where {eg} is the canonical base (if there is
no ambiguity, we may even write g instead of eg) and the ng in the sum
are all 0 but a finite number of them. Then Z[G] is an abelian group for
the termwise sum and also a ring, where the multiplication is induced
by the relation egeh = egh. In other words (∑

g∈G ngeg)(∑
g∈G n

′
geg) =∑

g∈G(∑
h∈G nhn

′
h−1g)eg.

Now Z[G] is also a G-module for the action g ·x = egx (it is called the
regular representation of G). We can see that, for any M ∈ G−Mod,
the map

HomG−Mod(Z[G],M) −→M u 7→ u(e1G
),

is an isomorphism of abelian groups. It follows easily that Z[G] is
projective.

Now we assume G = Z/nZ and define N = ∑
g eg ∈ Z[G] (the norm

element) and δ = e0 − e1. We see that egN = Neg = N for any g,
hence Nδ = δN = 0. We even have the exact sequence

· · · ·δ−→ Z[G] ·N−→ Z[G] ·δ−→ Z[G] ·N−→ Z[G] ·δ−→ Z[G] ε−→ Z −→ 0,
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where ε(∑
g∈G ngeg) = ∑

ng, and ·N , ·δ are the multiplication on the
right (which are morphisms of left modules).

Now (Z[G])G ≃ Z is the quotient of Z[G] by im(·δ). It follows that

Hi(G,Z) ≃ H−i
(
· · · δ̄−→ Z N̄−→ Z δ̄−→ Z N̄−→ Z δ̄−→ Z),

where δ̄ and N̄ are the maps induced by ·δ and ·N . We see that δ̄ = 0
and N̄ is the multiplication by n. Hence

Hi(G,Z) =


Z if i = 0,
Z/nZ if i = 1, 3, 5, . . . ,
0 if i = 2, 4, 6, . . . .

Remark 6.16. In Example 6.15 to see that Z[G] we can use the more
general fact that in the category of modules over a ring R, the free mod-
ule R(I) is projective, for any family I, and that G−Mod is equivalent
to Mod(Z[G]).

Indeed a structure of G-module on an abelian group A extends by
linearity as a structure of left module over Z[G], by setting (∑

ngeg)x :=∑
ng(g · x), for x ∈ A. The converse is easy: a Z[G]-module structure

on A gives a G-module structure by g · x := egx.
Now, to see that R(I) is projective in Mod(R), we use

HomMod(R)(R(I),M) ≃M I ,

for any M ∈ Mod(R).

Lemma 6.17. Let C be an abelian category. Let A be a (maybe infinite)
set.

Let Pα, α ∈ A, be projective objects. We assume that P = ⊕
α∈A Pα

exists. Then P is projective.
Let Iα, α ∈ A, be injective objects. We assume that I = ∏

α∈A Iα

exists. Then I is injective.

Proof. This follows from HomC(⊕
α∈A Pα, X) = ∏

α∈A HomC(Pα, X) and
HomC(X,∏α∈A Iα) = ∏

α∈A HomC(X, Iα). □

Lemma 6.18. An abelian group is injective if and only if it is divisible
that is, for any r ̸= 0 ∈ Z and a ∈ A, there exists b ∈ A such that
a = rb.

Sketch of proof. We assume A is divisible and consider an inclusion
of abelian groups M ⊂ N and a morphism f : M −→ A. We choose
x ∈ N \M and prove that f can be extended to the subgroup M + ⟨x⟩
of N ; then we could conclude by Zorn Lemma (left to the reader). We
have the exact sequence 0 −→M ∩⟨x⟩ −→M ⊕⟨x⟩ −→M + ⟨x⟩ −→ 0. We
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have ⟨x⟩ ≃ Z/nZ and M ∩ ⟨x⟩ ≃ Z/mZ for some m | n. We assume
n ̸= 0 (the other case is similar and easier); then y = n

m
x is a generator

of M ∩ ⟨x⟩.
By hypothesis there exists a ∈ A such that f(y) = n

m
a. We remark

that na = mf(y) = f(my) = f(0) = 0; hence we can define f ′ : M ⊕
⟨x⟩ −→ A, (z, kx) 7→ f(z) − ka. Then f ′|M∩⟨x⟩ = 0 and f ′ factorizes
through f ′′ : M + ⟨x⟩ −→ A which is the required extension of f . □

Lemma 6.19. The category Ab has enough projectives and enough
injectives.

Proof. (i) We know that Z is projective. For M ∈ Ab and x ∈ M
we define φx : Z −→ M , n 7→ n · x. Now the sum of all these maps
Z(M) −→ M , (nx)x∈M 7→

∑
nx · x is surjective (note that the sum is

finite). By Lemma 6.17 Z(M) is projective.
(ii) Let M ∈ Ab. For any x ̸= 0 ∈ M we can find a morphism
ψx : M −→ Q/Z such that ψx(x) ̸= 0. Indeed we first define ψx on the
subgroup ⟨x⟩ ⊂ M by ψx(nx) = [1/m], where m is the order of x, if
m ̸= ∞, and ψx(nx) = [n/2] if m = ∞; then we can extend ψx to M
since Q/Z is injective (by Lemma 6.18). Now we make the product of
these maps and define ψ : M −→ Q/ZM , y 7→ (ψx(y))x∈M . Then ψ is
injective and Q/ZM is injective. □
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7. DM

Exercice 7.1. On travaille dans une catégorie abélienne. Soit f : X −→
Y , g : Y −→ Z deux morphismes. On rappelle que Hom(X ⊕ Y, Z) ≃
Hom(X,Z) ⊕ Hom(Y, Z) et on note (a, b) les morphismes via cet iso-
morphisme. De même Hom(W,X⊕Y ) ≃ Hom(W,X)⊕Hom(W,Y ) et
on note

(
c
d

)
les morphismes. Ainsi (a, b) ◦

(
c
d

)
= a ◦ c+ b ◦ d.

1) Montrer qu’on a une suite exacte 0 −→ X
u−→ X ⊕ Y v−→ Y −→ 0 où

u =
(

idX

f

)
, v = (f,−idY ).

2) Montrer qu’on a une suite exacte 0 −→ ker f −→ ker g◦f −→ ker g −→
coker f −→ coker g ◦ f −→ coker g −→ 0.

Exercice 7.2. On considère le diagramme commutatif suivant dans
une catégorie abélienne:

A //

a
��

B
f //

b
��

C
g //

c
��

D

d
��

A′ h // B′ // C ′ // D′.

On suppose que les lignes sont exactes, que a est un épimorphisme et
b, d des monomorphismes. On veut montrer que c est un monomor-
phisme en utilisant le lemme du serpent. Soit x : X −→ C tel que
c ◦ x = 0.

Montrer que x factorise par y : X −→ im f .
Montrer qu’on a le diagramme commutatif

A //

a1
��

B //

b
��

im f //

c1
��

0

0 // im h
h // B′ // C ′

où les lignes sont exactes et a1, c1 sont induits par a, c. Conclure.

Exercice 7.3. (1) Soit F : C −→ C ′ un foncteur additif entre catégories
abéliennes. On rappelle que F est exact à gauche si, pour toute suite
exacte 0 −→ A −→ B −→ C dans C, la suite 0 −→ F (A) −→ F (B) −→ F (C)
est exacte dans C ′.

A la place on suppose seulement que, pour toute suite exacte 0 −→
A −→ B −→ C −→ 0 dans C, la suite 0 −→ F (A) −→ F (B) −→ F (C) est
exacte dans C ′. Montrer que F est exact à gauche.
(2) On rappelle que F est exact si, pour toute suite exacte 0 −→ A −→
B −→ C −→ 0 dans C, la suite 0 −→ F (A) −→ F (B) −→ F (C) −→ 0 est
exacte dans C ′. Montrer alors que, pour toute suite exacte A −→ B −→ C
dans C, la suite F (A) −→ F (B) −→ F (C) est exacte dans C ′.
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Exercice 7.4. Soit p : X −→ X un morphisme dans une catégorie abéli-
enne tel que p◦p = p. Montrer qu’il existe un isomorphisme X ≃ Y ⊕Z
tel que p = i ◦ r où i : Y −→ X et r : X −→ Y sont les morphismes na-
turels associés à cette décomposition. (Indication: poser q = idX − p,
décomposer p = ip ◦ πp : P πp−→ im p

ip−→ P , de même pour q. Dans la
catégorie des espaces vectoriels, que seraient Y et Z?)

Exercice 7.5. Soit F : C −→ C ′ un foncteur additif entre catégories
abéliennes. Montrer que (a) ⇒ (b) ⇒ (c):
(a) F est fidèle, c’est-à-dire, Hom(X, Y ) −→ Hom(F (X), F (Y )) est in-

jectif, pour tout X, Y ∈ C,
(b) F est conservatif, c’est-à-dire, pour u : X −→ Y dans C, si F (u) est

un isomorphisme, alors u est un isomorphisme,
(c) pour X ∈ C, si F (X) ≃ 0, alors X ≃ 0.
Montrer que, si F est exact, alors (c) ⇒ (a).

(Indication: pour (a)⇒ (b), soit j : keru −→ X, montrer que F (j) =
0. . . ; pour (c) ⇒ (a) avec F exact, on pourra montrer d’abord que F
est conservatif.)

Exercice 7.6. Soit X un espace topologique. Montrer que le foncteur
Psh(X) −→ Sh(X), P 7→ P a est exact. On rappelle qu’une suite de
faisceaux A −→ B −→ C est exacte si et seulement si les suites de germes
Ax −→ Bx −→ Cx sont exactes pour tout x ∈ X.

Exercice 7.7. SoitX un espace topologique. Pour un faisceau F surX
et un ouvert U ⊂ X on note F |U le faisceau sur U défini par F |U(V ) =
F (V ), V ⊂ U . On obtient en fait un foncteur Sh(X) −→ Sh(U), F 7→
F |U (on a aussi un morphisme HomSh(X)(F,G) −→ HomSh(U)(F |U , G|U)).

Soit G un autre faisceau sur X. On note Hom(F,G) le préfaisceau
sur X défini par Hom(F,G)(U) = HomSh(U)(F |U , G|U). Montrer que
c’est un faisceau.

Exercice 7.8. (**) Soit A un groupe abélien et F le faisceau des
fonctions à valeurs dans A sur R (c’est-à-dire F (U) = {f : U −→ A} -
sans aucune condition sur f). Noter que F ≃ ∏

x∈RA{x}. Comme AR
est le faisceau des fonctions localement constantes on a un morphisme
naturel i : AR −→ F . Vérifier que i est un monomorphisme. On définit
G = coker i. On a donc la suite exacte 0 −→ AR −→ F

p−→ G −→ 0.
(i) Montrer que pour tout interval ouvert I de R le morphisme F (I) −→
G(I) est surjectif.

Voici des étapes possibles. On suppose I = ]−1, 1[ et on choisit
s ∈ G(I); on sait que F0 −→ G0 est surjectif, donc on peut choisir
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t0 ∈ F0 tel que p0(t0) = s0. On représente t0 par t ∈ F (]−ε, ε[).
Vérifier que, quitte à prendre ε > 0 plus petit on a p|]−ε,ε[(t) = s|]−ε,ε[.

Pour ε ≤ x < 1 soit
E(x) = {t′ ∈ F (]−ε, x[); p|]−ε,x[(t′) = s|]−ε,x[, t

′|]−ε,ε[ = t}.
Montrer que E(x) est vide ou un singleton. Montrer que si E(x) ̸= ∅
et x < 1, alors il existet x′ > x tel que E(x′) ̸= ∅. Montrer que si xi est
une suite croissante dans [ε, 1[ de limite x et tous les E(xi) sont non
vides, alors E(x) est non vide.
(ii) Montrer que pour tout ouvert U de R le morphisme F (U) −→ G(U)
est surjectif.
(iii) Montrer que F est flasque, c’est-à-dire pour tout ouvert U , le
morphisme de restriction F (R) −→ F (U) est surjectif. Montrer que G
est flasque.
(iv) On travaille dans la catégorie des faisceaux d’espaces vectoriels
sur un corps k. Dans ce cadre on admet que les faisceaux flasques
sont injectifs. Calculer RiΓ(R; kR), avec la notation Γ(U ;F ) = F (U)
(on sait que Γ(U ;−) : Sh(X) −→ Ab est exact à gauche et on note
RiΓ(U ;−) ses foncteurs dérivés à droite – une autre notation standard
est H i(U ;−)).
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8. Adjoint functors

Let C, C ′ be categories and let R : C ′ −→ C, L : C −→ C ′ be two
functors. Roughly speaking, we say that L is left adjoint to R if
HomC(X,R(Y )) ≃ HomC′(L(X), Y ) for all X ∈ C, Y ∈ C ′. Of course
we want these isomorphisms to be functorial in X and Y . For this we
remark that HomC(·, ·) is a functor from Cop × C to Set. In the same
way HomC(·, R(·)) and HomC′(L(·), ·) are functors from Cop×C ′ to Set.
Now we can give a formal definition:

Definition 8.1. Let C, C ′ be categories and let R : C ′ −→ C, L : C −→ C ′

be two functors. We say that L is left adjoint to R (or R right adjoint
to L, or (L,R) is an adjoint pair) if there exists an isomorphism of
functors from Cop × C ′ to Set:

(8.1) HomC(·, R(·)) ≃ HomC′(L(·), ·).

It is called the adjunction morphism.

Lemma 8.2. let F : C −→ C ′ be a functor. If F has a right (or left)
adjoint, then this adjoint is unique, up to a canonical isomorphism.

Proof. Let G,G′ be two right adjoints. For any X ∈ C, Y ∈ C ′ we
have HomC(X,G(Y )) ≃ HomC′(F (X), Y ) ≃ HomC(X,G′(Y )). Setting
X = G(Y ) the image of idG(Y ) gives θ(Y ) : G(Y ) −→ G′(Y ). Using the
functoriality we see that θ is a morphism of functors. Switching G,G′

gives θ′ : G′ −→ G. By construction the composition θ′ ◦ θ gives the
identity morphism HomC(X,G(Y )) −→ HomC(X,G(Y )), ∀X, Y , and it
follows that θ′ ◦ θ = id. □

SettingX = R(Y ) in the equality HomC(X,R(Y )) ≃ HomC′(L(X), Y )
the image of idR(Y ) gives η(Y ) : L ◦ R(Y ) −→ Y . As in the proof of
Lemma 8.2 we can see η is a morphism of functors. Setting Y = L(X)
gives a morphism in the other direction. So we obtain

(8.2) ε : idC −→ R ◦ L, η : L ◦R −→ idC′

and we can check that the bijection (8.1) is given as the compositions

HomC(L(X), L ◦R(Y ))
η(Y )◦−

**
HomC(X,R(Y ))

L(−)
44

HomC′(L(X), Y )

R(−)tt
HomC′(R ◦ L(X), R(Y ))

−◦ε(X)

jj
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Runing around this diagram gives the identity morphisms at left and
right hand sides. Setting Y = L(X) or X = R(Y ) we deduce that the
following compositions are the identity morphisms:

(η ◦ L) ◦ (L ◦ ε) = idL : L −→ L ◦R ◦ L −→ L,(8.3)
(R ◦ η) ◦ (ε ◦R) = idR : R −→ R ◦ L ◦R −→ R.(8.4)

We can prove (see for example [3] Prop. 1.5.4):

Lemma 8.3. If L,R are functors and ε, η morphisms of functors sat-
isfying (8.3), (8.4), then (L,R) is an adjoint pair.

Example 8.4. Let for : Ab −→ Set be the forgetful functor. Then
for has a left adjoint, the “free abelian group” functor I 7→ Z(I), that
is, HomSet(I, for(A)) ≃ HomAb(Z(I), A).

In the same way we can define the functors “free k-module” for a
ring k, “free group”, “free associative k-algebra”,. . .

Example 8.5. Let X be a topological space. The forgetful functor
for : Sh(X) −→ Psh(X) and the “associated sheaf functor” Psh(X) −→
Sh(X), P 7→ P a are adjoint: we have the functorial isomorphism

HomPsh(X)(P, for(F )) ≃ HomSh(X)(P a, F )
for P ∈ Psh(X), F ∈ Sh(X).

Exercise 8.6. Let C, C ′ be abelian categories and let R : C ′ −→ C,
L : C −→ C ′ be additive functors such that R is right adjoint to L.
Prove that R is left exact and L is right exact.
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9. Direct and inverse images of sheaves

Let f : X −→ Y be a continuous map between topological spaces. Let
k be a ring. We define the direct image functor f∗ : Sh(X) −→ Sh(Y )
and the inverse image functor f−1 : Sh(Y ) −→ Sh(X). They form
an adjoint pair (f−1, f∗). When X and Y are Hausdorff and locally
compact we also define the proper direct image functor f! : Sh(X) −→
Sh(Y ).

Definition 9.1. For F ∈ Psh(X) we define f∗F ∈ Psh(Y ) by its
sections (f∗F )(V ) = F (f−1(V )) for any open subset V ⊂ Y , with the
restriction maps naturally given by those of F . If F ∈ Sh(X) we can
check that f∗F ∈ Sh(Y ).

If u : F −→ G is a morphism in Sh(X), we define f∗u : f∗F −→ f∗G by
(f∗u)(V ) = u(f−1(V )). We obtain functors f∗ : Psh(X) −→ Psh(Y ),
f∗ : Sh(X) −→ Sh(Y ).

Lemma 9.2. The functor f∗ : Psh(X) −→ Psh(Y ) is exact and the
functor f∗ : Sh(X) −→ Sh(Y ) is left exact.

Definition 9.3. For G ∈ Psh(Y ) we define a presheaf prf−1G ∈
Pshk(X) by (prf−1G)(U) = lim−→V ⊃f(U) G(V ), where V runs over the
open neighborhoods of f(U) in Y . The restriction maps are naturally
induced by those of G. A morphism u : F −→ G induces morphisms on
the inductive limits, (prf−1u)(U) : (prf−1F )(U) −→ (prf−1G)(U), for all
U ∈ Op(X), which are compatible and define prf−1u : prf−1F −→ prf−1G.
This gives a functor prf−1 : Pshk(X) −→ Pshk(Y ).

We set f−1G = (prf−1G)a and obtain a functor f−1 : Sh(Y ) −→
Sh(X).

When f : X −→ Y is an embedding of topological spaces (that is, f is
an inclusion and the topology of X is the induced topology) we often
write

G|X := f−1G.

If f is the inclusion of an open set, we have (G|X)(U) = G(U), for all
U ∈ Op(X).

Exercise 9.4. Let X be a Hausdorff topological space and Z ⊂ X a
compact subset. Then, for any F ∈ Sh(X) and V ∈ Op(Z), we have
(F |Z)(V ) ≃ lim−→U⊃V

F (U), where U runs over the open neighborhoods
of V in X.

Lemma 9.5. Let f : X −→ Y be a continuous map and let x ∈ Y . For
any F ∈ Sh(Y ) we have a natural isomorphism (f−1F )x ≃ Ff(x).
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Since the exactness of a sequence of sheaves can be checked in the
stalks we deduce:

Lemma 9.6. For any continuous map f : X −→ Y , the functor f−1 is
exact.

In the situation of Definitions 9.1 and 9.3 we define two morphisms
of functors
(9.1) ε : idPsh(Y ) −→ f∗ ◦ prf−1, η : prf−1 ◦ f∗ −→ idPsh(X)

as follows. For G ∈ Psh(Y ) and V ∈ Op(Y ) we have
f∗ ◦ prf−1(G)(V ) = (prf−1G)(f−1V ) = lim−→

W

G(W ),

where W ⊂ Y runs over the open subsets such that f(f−1(V )) ⊂ W .
We remark that V belongs to this family of W ’s. Hence we have a
natural morphism G(V ) −→ f∗ ◦ prf−1(G)(V ). It is compatible with the
restrictions maps for V ′ ⊂ V and gives ε(G) : G −→ f∗ ◦ prf−1(G). For
any F ∈ Sh(X) and U ∈ Op(X) we have

prf−1 ◦ f∗(F )(U) = lim−→
W

F (f−1(W )),

where W ⊂ X runs over the open subsets such that f(U) ⊂ W , that
is, U ⊂ f−1(W ). We thus have a natural morphism prf−1 ◦f∗(F )(U) −→
F (U), which defines our η.

We can check the hypothesis of Lemma 8.3 and deduce that (prf−1, f∗)
is an adjoint pair. Using Example 8.5 we obtain:

Proposition 9.7. Let f : X −→ Y be a continuous map between topo-
logical spaces. The pairs of functors (prf−1, f∗) and (f−1, f∗) are adjoint
pairs.

Definition 9.8. Let F ∈ Sh(X), U ∈ Op(X) and s ∈ F (U). The
support of s is the closed subset supp(s) of U defined by

U \ supp(s) =
⋃

V ∈Op(U), s|V ≃0
V.

Alternatively U \ supp(s) is the biggest open subset V of U such that
s|V ≃ 0.

A topological space X is locally compact if, for any x ∈ X and any
neighborhood U of x, there exists a compact neighborhood of x con-
tained in U . Now we assume X, Y are Hausdorff and locally compact.
Then a map f : X −→ Y is proper if the inverse image of any compact
subset of Y is compact.
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Definition 9.9. Let f : X −→ Y be a continuous map of Hausdorff
and locally compact spaces. For F ∈ Sh(X) we define a subsheaf
f!F ∈ Sh(Y ) of f∗F by

(f!F )(V ) = {s ∈ (f−1(V )); f |supp s : supp(s) −→ V is proper}
for any open subset V ⊂ Y . If u : F −→ G is a morphism in Sh(X),
the morphism f∗u : f∗F −→ f∗G sends f!F to f!G. We obtain a functor
f! : Sh(X) −→ Sh(Y ).

If the map f itself is proper, then we have f! ∼−→ f∗.

Definition 9.10. Let X be a Hausdorff and locally compact topolog-
ical space. For F ∈ Sh(X) and U ∈ Op(X) we set

Γc(U ;F ) = {s ∈ F (V ); supp(s) is compact.}

Proposition 9.11. Let f : X −→ Y be as in Definition 9.9. For any
F ∈ Sh(X) and y ∈ Y we have

(f!F )y ≃ Γc(f−1(y);F |f−1(y)).



HOMOLOGICAL ALGEBRA AND SHEAF THEORY 49

10. More general resolutions

Let C, C ′ be abelian categories. We assume that C has enough injec-
tives. For a given left exact functor F : C −→ C ′ we may compute RF
with more general resolutions than injective resolutions.
Definition 10.1. An object X ∈ C such that RiF (X) ≃ 0 for all i ≥ 1
is called F -acyclic.
Lemma 10.2. Let 0 −→ X0 −→ X1 −→ · · · −→ Xn −→ 0 be an exact
sequence in C. We assume that X0, . . . , Xn−1 are F -acyclic. Then Xn

is F -acyclic.
Proof. We proceed by induction on n. The case n = 2 is true by the
long exact sequence · · · −→ RiF (X1) −→ RiF (X2) −→ Ri+1F (X0) −→ · · · .

For n > 2 we split our sequence in two exact sequences
0 −→ X0 −→ X1 −→ · · · −→ Xn−2 −→ Y n−1 −→ 0,

0 −→ Y n−1 −→ Xn−1 −→ Xn −→ 0,
where Y n−1 = im(Xn−2 −→ Xn−1) ≃ ker(Xn−1 −→ Xn). By induction
Y n−1 is F -acyclic. Hence Xn is F -acyclic by the case n = 2. □

Lemma 10.3. Let 0 −→ X0 −→ X1 −→ · · · −→ Xn −→ 0 be an exact
sequence in C (here n may be ∞). We assume that X0, . . . , Xn are F -
acyclic. Then the sequence 0 −→ F (X0) −→ F (X1) −→ · · · −→ F (Xn) −→ 0
is exact.
Proof. We proceed as in the proof of the previous lemma. The case
n = 2 is true since R1F (X0) ≃ 0. In general we split the sequence as
in the previous lemma. Then Y n−1 is F -acyclic and the induction gives
the exact sequences

0 −→ F (X0) −→ F (X1) −→ · · · −→ F (Xn−2) −→ F (Y n−1) −→ 0,
0 −→ F (Y n−1) −→ F (Xn−1) −→ F (Xn) −→ 0,

which glue into the exact sequence of the current lemma. □

Proposition 10.4. Let X ∈ Ob(C) and let J ∈ C+(J ) be a resolution
of X by F -acyclic objects. Then we have an isomorphism RiF (X) ≃
H i C(F )(J).
Proof. (i) As in Proposition 6.3, we can find an injective resolution
I ∈ C+(C) of X and a morphism u : J −→ I in C(C) which lifts idX :

0 // X
ε0
// J0 d0

J //

u0
��

J1 //

u1
��

J2 //

u2
��

· · ·

0 // X
ε1
// I0 d0

I // I1 // I2 // · · ·
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and such that the uk are monomorphisms. Indeed we first choose a
monomorphism u0 with I0 injective and set ε1 = u0 ◦ ε0. This gives
the first commutative square. We define p0 : I0 −→ coker(ε1) and v0 =
p0 ◦ u0. We set J ′1 = coker

(
−v0

d0
J

)
so that we have the commutative

diagram

J0 d0
J //

v0

��

J1

w1

��
coker(ε1) i0

// J ′1

where i0 is a monomorphism (check!). We choose a monomorphism
j1 : J ′1 −→ J1 with J1 injective and set d0

I = j1 ◦ i0 ◦ p0, u1 = j1 ◦ w1.
Since j1 ◦ i0 is a monomorphism, we have ker(d0

I) = ker(p0) = im(ε1).
This gives the second commutative square. We go on by induction.

(ii) We set K = coker(u). Then 0 −→ J −→ I −→ K −→ 0 is a short
exact sequence and Proposition 3.9 implies that H iK ≃ 0 for all i ∈ Z.
Hence, viewing K as a long sequence in C, it is an exact long sequence
(we say that K is an acyclic complex).

By Lemma 10.2 with n = 2, the Ki’s are F -acyclic. By Lemma 10.3
we deduce that the long sequence F (K ·) is exact. In other words
H i(C(F )(K)) ≃ 0 for all i ∈ Z.

By Lemma 10.3 again, with n = 2, the sequences 0 −→ F (J i) −→
F (I i) −→ F (Ki) −→ 0 are exact. Now the result follows from Proposi-
tion 3.9. □

Definition 10.5. A family of objects J ⊂ Ob(C) is called F -injective
if

(i) for any X ∈ Ob(C) there exist J ∈ J and a monomorphism
0 −→ X −→ J ,

(ii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C, if X ′ ∈ J
and X ∈ J , then X ′′ ∈ J ,

(iii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with
X ′, X,X ′′ ∈ J , the sequence 0 −→ F (X ′) −→ F (X) −→ F (X ′′) −→
0 is exact.

Lemma 10.6. The objects in J are F -acyclic.

Proof. We choose an injective object I ∈ C and a monomorphism
a : J −→ I. Then we choose J ′ ∈ J and a monomorphism b : I −→ J ′.
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We set X = coker(a) and J ′′ = coker(b). We have the exact sequences

0 // J // I //

��

X //

��

0

0 // J // J ′ // J ′′ // 0
and the long cohomology exact sequences

0 // F (J) // F (I) //

��

F (X) //

��

R1F (J) // R1F (I)

��
0 // F (J) // F (J ′) // F (J ′′) u // R1F (J) v // R1F (J ′),

RiF (X) //

��

Ri+1F (J) // Ri+1F (I)

��
RiF (J ′′) // Ri+1F (J) vi+1

// Ri+1F (J ′),
Now we prove the result by induction on i.

We first consider i = 1. By (ii) of Definition 10.5 we have J ′′ ∈
J and then (iii) implies that the morphism u is zero. Hence v is a
monomorphism. Since v factorizes through R1F (I), which is zero since
I is injective, we deduce that R1F (J) is zero, as claimed.

Assuming the result true for i, we have RiF (J ′′) ≃ 0 since J ′′ ∈ J .
Hence the morphism vi+1 is a monomorphism and we conclude as in
the case i = 1 that Ri+1F (J) ≃ 0. □

We can modify the proof of Prop. 6.3 to obtain:

Proposition 10.7. If J is an F -injective family, then any complex
X ∈ C+(C) has a resolution by objects of J , that is, there exist a
complex of objects in J , J ∈ C+(J ), and a morphism u : X −→ J in
C+(C) such that u is a qis.

Flabby and soft sheaves. Let X be a topological space.

Definition 10.8. A sheaf F ∈ Sh(X) is flabby if, for any open subset
U ⊂ X, the restriction morphism F (X) −→ F (U) is surjective.

Let f : X −→ Y be a continuous map.

Proposition 10.9 (see [2], Section 2.4). The family of flabby sheaves
is f∗-injective and f!-injective.

We apply this proposition to the computation of H i(R; k[a,b]) for a
closed interval [a, b] of R.
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We recall the morphism (8.2) ε : k[a,b] −→ i∗i
−1k[a,b], where i : Rdisc −→

R is the map from R with the discrete topology to R. We can iden-
tify i∗i

−1k[a,b] with the sheaf F[a,b] of functions on [a, b] defined by
F[a,b](U) = {f : U ∩ [a, b] −→ R}. This sheaf is flabby since we can
extend a function defined on U ∩ [a, b] arbitrarily to a function defined
on [a, b]. We define G = coker(ε) and we have the short exact sequence:
(10.1) 0 −→ k[a,b] −→ F[a,b] −→ G −→ 0.

Lemma 10.10. For any open subset U ⊂ R the sequence (10.1) gives
the exact sequence of sections:

(10.2) 0 −→ Γ(U ; k[a,b])
a(U)−−→ Γ(U ;F[a,b])

b(U)−−→ Γ(U ;G) −→ 0.

Proof. (i) Writing U as a disjoint union of intervals, U = ⊔
k∈Z Ik, we

have Γ(U ;F ) ≃ ∏
k∈Z Γ(Ik;F ). Since a product of exact sequences of

abelian groups is exact, we can assume that U is an interval. We have
to check that the last morphism in (10.2) is surjective. Let s ∈ Γ(U ;G)
be given.
(ii) Let us first prove that for any compact subinterval K = [c, d] ⊂ U
there exists a neighborhood V of K and s′ ∈ Γ(V ;F[a,b]) such that
b(V )(s′) = s|V .

For any x ∈ U there exist a neighborhood Wx of x and s′(x) ∈
Γ(Wx;F[a,b]) such that b(Wx)(s′(x)) = s|Wx . We can assume that the
Wx are intervals and we choose a finite number of them to cover K.
We denote them W1, . . . ,WN and order them so that Vi :=W1∪· · ·∪Wi

is connected, for all i. We also write s′
i ∈ Γ(Wi;F[a,b]) instead of s′(x).

Let us prove by induction on i that there exists s′′
i ∈ Γ(Vi;F[a,b]) such

that b(Vi)(s′′
i ) = s|Vi

. For i = 1 we have s′′
1 = s′

1. Assuming s′′
i is

defined we have
b(Vi ∩Wi+1)(s′′

i |Vi∩Wi+1) = s|Vi∩Wi+1 = b(Vi ∩Wi+1)(s′
i+1|Vi∩Wi+1).

Hence there exists ti ∈ Γ(Vi ∩Wi+1; k[a,b]) such that
s′′

i |Vi∩Wi+1 − s′
i+1|Vi∩Wi+1 = a(Vi ∩Wi+1)(ti).

We can extend ti to a section t′i ∈ Γ(Wi+1; k[a,b]) because Vi ∩ Wi+1
is connected. We set s̃i+1 = s′

i+1 − a(Wi+1)(t′i). Then we see that
s′′

i |Vi∩Wi+1 = s̃i|Vi∩Wi+1 and we can glue these sections in a section s′′
i+1

such that b(Vi+1)(s′′
i+1) = s|Vi+1 .

(iii) We remark that the section s′ ∈ Γ(V ;F[a,b]) found in (ii) is unique
up to the addition of a section of Γ(V ; k[a,b]), that is, up to the addition
of a constant function. Hence, for a given x0 ∈ U with x0 ∈ K, there
exists a unique s′ ∈ Γ(V ;F[a,b]) such that b(V )(s′) = s|V and s′(x0) = 0.
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Now we consider an increasing sequence Ki ⊂ Ki+1 ⊂ U , i ∈ N,
of compact intervals whose union is U . For each i we have a unique
s′

i ∈ Γ(Vi;F[a,b]) such that b(Vi)(s′
i) = s|Vi

and s′
i(x0) = 0, where Vi is

some neighborhood of Ki. By unicity we have s′
i+1|Vi

= s′
i. Hence we

can glue the s′
i in a section s′ ∈ Γ(U ;F[a,b]) such that b(U)(s′) = s. □

Lemma 10.11. The sheaf G of (10.1) is flabby.
Proof. Let U ⊂ R and s ∈ G(U) be given. By Lemma 10.10 there
exists s′ ∈ F[a,b](U) such that b(U)(s′) = s. Since F[a,b] is flabby, there
exists t′ ∈ F[a,b](R) such that t′|U = s′. Then t = b(R)(t′) satisfies
t|U = s. □

Hence (10.1) gives a flabby resolution of k[a,b]. We deduce that for
any open subset U of R

H i(U ; k[a,b]) ≃ H i(0 −→ Γ(U ;F[a,b])
b(U)−−→ Γ(U ;G) −→ 0).

By Lemma 10.10 the morphism b(U) is surjective and we obtain that
the cohomology of k[a,b] is concentrated in degree 0:
Proposition 10.12. Let [a, b] be a closed interval in R. For any open
interval U of R such that U ∩ [a, b] ̸= ∅, we have

H0(U ; k[a,b]) ≃ k and H i(U ; k[a,b]) ≃ 0 for i ̸= 0.
Now we assume X is Hausdorff and locally compact.

Definition 10.13. A sheaf F ∈ Sh(X) is c-soft if, for any compact
subset C ⊂ X, the restriction morphism F (X) −→ F (C) is surjective,
where F (C) := lim−→C⊂U

F (U), U running over the open neighborhoods
of C.

We remark that a flabby sheaf is c-soft.
An important example is the case where X is a C∞ manifold and

F = C∞
X is the sheaf of C∞ functions on X. More generally any sheaf

of modules over C∞
X is c-soft, in particular the sheaf of i-forms Ωi

X is
c-soft.

Let f : X −→ Y be a continuous map, X, Y Hausdorff and locally
compact.
Proposition 10.14 (see [2], Section 2.5). The family of c-soft sheaves
is f∗-injective and f!-injective.
Corollary 10.15. Let X be a C∞ manifold. Then H i(X;RRn) ≃
H i

dR(X), where H i
dR(X) is the de Rham cohomology of X.

Proof. By the Poincaré lemma the de Rham complex 0 −→ Ω0
X −→ Ω1

X −→
· · · −→ Ωn

X −→ 0, n = dimX, is a c-soft resolution of RX . The result
follows. □
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11. Definition of derived categories

In this section we give a first introduction to derived categories. We
only give a brief account on the subject and refer to the first chapter
of [2] (or Chapters 10-13 of [3]) for details and proofs.

Definition 11.1. Let C be an abelian category and let u : X −→ Y be
a morphism in C(C) or in K(C). We say that u is a quasi-isomorphism
(qis for short) if the morphisms H i(u) : H i(X) −→ H i(Y ) are isomor-
phisms, for all i ∈ Z.

A related notion is that of acyclic complexes: a complex X in C(C)
or in K(C) is acyclic (or exact) if H i(X) ≃ 0 for all i ∈ Z (in other
words the long sequence · · ·X i di

−→ X i+1 · · · is exact).

Exercise 11.2. Let u : X −→ Y be a morphism in C(C). Then u is a
qis if and only if ker(u) and coker(u) are acyclic.

The derived category of C, denoted D(C), is obtained from C(C) by
inverting the qis. This process is called localization.

Definition 11.3. Let A be a category and S a family of morphisms
in A. A localization of A by S is a category AS (a priori in a bigger
universe) and a functor Q : A −→ AS such that

(i) for all s ∈ S, Q(s) is an isomorphism,
(ii) for any category B and any functor F : A −→ B such that F (s) is

an isomorphism for all s ∈ S, there exists a functor FS : AS −→ B
such that F ≃ FS ◦Q,

(iii) denoting by Func(·, ·) the category of functors, the functor
◦Q : Func(AS ,B) −→ Func(A,B) is fully faithful (which im-
plies unicity of FS in (ii)).

It is possible to construct AS as a category with the same objects
as A and with morphisms defined as chains (s1, u1, s2, u2, . . . , sn, un)
with si ∈ S and ui any morphism in A modulo some equivalence
relation. Such a chain is meant to represent un ◦ s−1

n ◦ un−1 ◦ · · · ◦
s−1

1 . The equivalence relation is generated by (s1, u1, . . . , sn, un) ∼
(s1, u1, . . . , s, s, . . . , sn, un) where (s, s), s ∈ S, is inserted between ui

and si+1. The composition is the concatenation.
However in our situation the localization will be obtained by a cal-

culus of fractions and we only need chains of (s, u) length 2. We will
not use this fact and refer to Section 11.2.

Definition 11.4. Let C be an abelian category. The derived category
of C is the localization D(C) = (K(C))Qis. We denote by QC : K(C) −→
D(C) the localization functor (or its composition with C(C) −→ K(C)).
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Starting with K∗(C) where ∗ = +,− or b, we define in the same way
D∗(C).

The obvious functor C(C) −→ K(C) sends qis to qis and hence induces
a functor (C(C))Qis −→ (K(C))Qis. We can prove that this functor is
an equivalence (see [1]). So we could as well define D(C) directly from
C(C). The point is that, starting from K(C), the localization can be
constructed by a calculus of fractions.

The categories K(C) and D(C) are additive. They are not abelian in
general.

By definition the cohomology functors H i : K(C) −→ C, i ∈ Z, factor-
ize through the localization functor. We still denote by H i : D(C) −→ C
the induced functors.

Lemma 11.5. Let C, C ′ be abelian categories. Let F : C −→ C ′ be an
exact functor. Then C(F ) sends acyclic complexes to acyclic complexes
and it sends qis to qis. In particular QC′ ◦K(F ) : K(C) −→ D(C ′) sends
qis to isomorphisms and factorizes in a unique way through a functor
D(C) −→ D(C ′) that we still denote by F :

K(C)
K(F )

//

QC
��

K(C ′)
QC′
��

D(C) F // D(C ′).

We have a natural embedding of C in C(C) which sends X ∈ C to
the complex (X ·, d·

X) = · · · −→ 0 −→ X −→ 0 −→ · · · with X0 = X
and X i = 0 for i ̸= 0. This induces by composition other functors
C −→ K(C) and C −→ D(C). We can check that all these functors are
fully faithful embeddings of C in C(C), K(C) or D(C).

We have the following generalization of Proposition 6.10.

Proposition 11.6. Let C be an abelian category. We assume that C
has enough projectives and we let P be its full subcategory of projective
objects. We denote by Q|P : K−(P) −→ D−(C) the functor induced by
the quotient functor. Then Q|P is an equivalence of categories.

Similarly, if C has enough injectives and I is the full subcategory of
injective objects, then Q|I : K+(I) −→ D+(C) is an equivalence.

Definition 11.7. Let C, C ′ be abelian categories. We assume that C has
enough projectives. Let F : C −→ C ′ (or F : C−(C) −→ C−(C ′)) be a right
exact functor. Let K(F ) : K−(P) −→ K−(C ′) be the functor induced
by F . We define LF : D−(C) −→ D−(C ′) by LF = QC′ ◦K(F ) ◦ resproj,
where resproj is an inverse to the equivalence Q|P of Proposition 11.6.
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In the same way, if C has enough injectives and F is left exact, we
define RF : D+(C) −→ D+(C ′) by RF = QC′ ◦K(F )◦resinj, with resinj

inverse of Q|I .

By definition we have H iLF = LiF .
If F is exact then LF ≃ F ≃ RF with the notation of Lemma 11.5.
The first interest of introducing the derived category is the possibility

to compose derived functors:

Proposition 11.8. Let F : C −→ C ′, G : C ′ −→ C ′′ be left exact functors
between abelian categories. We assume that C and C ′ have enough in-
jectives and that F sends the injective objects of C to G-acyclic objects
of C ′. Then R(G ◦ F ) ≃ RG ◦RF .

For example we can compute H i
c(Rn; kRn) by induction on n in

Proposition 11.13 below.

Lemma 11.9. Let f : X −→ Y , g : Y −→ Z, be continuous maps. Then
R(g ◦ f)∗ ≃ Rf∗ ◦Rg∗. If the spaces are Hausdorff and locally compact
spaces, we also have R(g ◦ f)! ≃ Rf! ◦Rg!.

Proof. If F ∈ Sh(X) is injective, then f∗(F ) is injective. Similarly,
if F ∈ Sh(X) is c-soft, then f!(F ) is c-soft. Hence we can apply
Proposition 11.8 in both cases. □

Notation 11.10. For a complex X = (X ·, d·
X) in C(C) (or in K(C) or

D(C)) and for k ∈ Z, we denote by X[k] the shifted complex defined
by (X[k])i = X i+k and di

X[k] = (−1)kdi+k
X .

In particular, for X ∈ C viewed as a complex concentrated in degree
0, the complex X[k] is concentrated in degree −k.

Definition 11.11. Let f : X −→ Y be a continuous map of Hausdorff
and locally compact spaces. We say that F ∈ Sh(X) is f -soft if, for
any y ∈ Y , F |f−1(y) is c-soft.

Proposition 11.12. The family of f -soft sheaves if f!-injective.

Proposition 11.13. Let p : Rn+d −→ Rd be the projection and let k be
an abelian group. Then Rp!(kRn+d) ≃ kRd [−n]. In particular

H i
c(Rn; kRn) ≃

k for i = n,
0 for i ̸= n.

Proof. If d > 1 we can write p = q ◦ r, with r : Rn+d −→ Rn−1+d and
q : Rn−1+d −→ Rd. By Lemma 11.9 we can prove the result by induction
on n, once we have check the case n = 1.
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In dimension 1 we have seen that (10.1) gives a flabby, hence c-
soft, resolution of kR. On Rd+1 we define F by F(U) = {f : U −→ k;
f |U∩(Rd×{y}) is locally constant, for each y ∈ R}. We remark that kRd+1

is a subsheaf of F and we define G = coker(kRd+1 −→ F). By definition
we have the exact sequence 0 −→ kRd+1 −→ F −→ G −→ 0. For each
x ∈ Rd, its restriction to r−1(x) is (10.1), where r : Rd+1 −→ Rd is the
projection. Hence F and G are r-soft and we can use the resolution to
compute Rr!(kRd+1). □

We have used a slight generalization of Lemma 10.10 in the proof of
Proposition 11.13 and we generalize a bit more in the next lemma. Let
p : Rn+1 −→ Rn be the projection and, for each x ∈ R, let ix : Rn × {x}
be the inclusion. For any F ∈ Sh(Rn+1) we set

R0(F ) =
∏
x∈R

ix∗i
−1
x (F ).

The adjunctions (i−1
x , ix∗) give the natural morphisms F −→ ix∗i

−1
x (F ).

Since Hom(F,R0(F )) ≃ ∏
x∈R ix∗Hom(F, i−1

x (F )) we obtain a morphism
ε(F ) : F −→ R0(F ). We set R1(F ) = coker(ε(F )) and get a sequence

(11.1) 0 −→ F
ε(F )−−→ R0(F ) −→ R1(F ) −→ 0.

Lemma 11.14. Let p : Rn+1 −→ Rn be the projection and let F ∈
Sh(Rn+1). Then

(1) The morphism ε(F ) is a monomorphism and the sequence (11.1)
is exact.

(2) The sheaves R0(F ) and R1(F ) are p-soft.

Proof. For y ∈ Rn we let jy : R −→ Rn+1 be the inclusion x 7→ (x, y).
We have (j−1

y (F ))x ≃ F(x,y). Since exactness can be checked at the
germs, we can as well restrict first to R through j−1

y . In the same way,
a sheaf G is p-soft if, for each y ∈ Rn the sheaf j−1

y (G) is c-soft. Hence
we may assume from the beginning that n = 0 and we work on R.
(a) For U ⊂ R open the morphism F (U) −→ (∏

x∈R(Fx){x})(U) =∏
x∈R(Fx){x}(U) = ∏

x∈U Fx maps a section s to the product of its germs;
if the image is 0, then sx = 0 for all x ∈ U and s = 0. Hence ε(F )(U)
is injective.
(b) It is not difficult to see that R0(F ) is flabby, hence c-soft. Let
C ⊂ R be compact subset and s ∈ R1(F )(C) = lim−→C⊂U

R1(F )(U),
where U is open, be given. We pick U such that s is defined on U .

For each x ∈ C we can choose an open interval I(x) and t(x) ∈
R0(F )(I(x)) such that d(t(x)) = s|I(x), where d : R0(F ) −→ R1(F ) is
the quotient map. We cover C by a finite number of such intervals
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say I(x1), . . . , I(xN). We write I(xk) = ]ak, bk[. We can assume that
the I(k)’s are ordered in the sense that ak < ak+1, bk < bk+1. We set
V = ⋃N

k=1 I(xk). We first assume for simplicity that V is connected so
V = ]a1, bN [ and we set W = ]a2, bN−1[.

SinceR0(F ) is c-soft we can find another section u(x1) ∈ R0(F )(I(x1))
which coincides with t(x1) near I(x1) ∩ (C ∪W ) and which is 0 near
a1. We set s′

1 = d(u(x1)). Then s′
1|I(x1)∩W coincides with s|I(x1)∩W . In

the same way we can find s′
N ∈ R1(F )(I(xN)) such that s′

N |I(xN )∩(C∪W )
coincides with s|I(xN )∩(C∪W ) and is 0 near bN . Then s′

1, s|W and s′
N

glue into a section s′ of R1(F )(V ) which coincides with s near C and
is 0 near a1 and bN . Now s′ can be extended by 0 on R.

When U has several components we argue in the same way near each
component and make the sum of the sections. This gives an extension
of s to R and proves that R1(F ) is c-soft. □

11.1. Resolutions via double complexes. Let C be an abelian cat-
egory and X = (· · · −→ 0 −→ X i −→ X i+1 −→ · · · −→ Xj −→ 0 −→ · · · ) be
an object of C(C). We assume that we have a commutative diagram

X i //

��

X i+1 //

��

· · · // Xj

��
Y i,0 di,0

1 //

di,0
2��

Y i+1,0 di+1,0
1 //

��

· · · // Y j,0

��
Y i,1 //

di,1
2��

Y i+1,1 //

��

· · · // Y j,1

��
... ... ... ...

where
• the rows Y i,k −→ Y i+1,k −→ · · · −→ Y j,k are complexes, for each k,
• the columns X l −→ Y l,0 −→ Y l,1 −→ Y l,2 −→ · · · are resolutions of
X l, for each l.

We define the total complex of Y ∗,∗ as the complex Tot∗(Y ) where
Totn(Y ) = ⊕

p+q=n Y
p,q with differential dn = ∑

p+q=n(dp,q
1 +(−1)pdp,q

2 ).
Then we can check:

Lemma 11.15. The morphisms Xk −→ Y k,0 define a morphism of
complexes X −→ Tot∗(Y ) which is a quasi-isomorphism.

Example 11.16. Let p : Rn+1 −→ Rn be the projection and F = (· · · −→
0 −→ F i −→ F i+1 −→ · · · −→ F j −→ 0 −→ · · · ) an object of C(Sh(Rn+1)).
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We use the functors R0, R1 of (11.1) in the double complex

F i //

��

F i+1 //

��

· · · // F j

��
R0(F i) //

��

R0(F i+1) //

��

· · · // R0(F j)

��
R1(F i) // R1(F i+1) // · · · // R1(F j)

and we deduce a quasi-isomorphism F −→ G where G = 0 −→ R0(F i) −→
(R0(F i+1) ⊕ R1(F i)) −→ · · · −→ (R0(F j) ⊕ R1(F j−1))R1(F j) −→ 0. By
Lemma 11.14 G is formed by p-soft sheaves.

Using this example and proceeding as in the proof of Proposition 11.13
we can prove

Proposition 11.17. Let p : Rn+1 −→ Rn be the projection and let F ∈
C(Sh(Rn+1)) be a complex of sheaves such that H iF = 0 for i ̸∈ [0, d],
for some d. Then H iRp!F = 0 for i ̸∈ [0, d+ 1]. In particular, for any
F ∈ Sh(Rn) we have H i

c(Rn;F ) ≃ 0 if i > n.

Proof. Using the truncation functors we can really assume that F i = 0
for i ̸∈ [0, d]. Then the complex G found in the example is p-soft
resolution of F of length d+ 1 and the conclusion follows. □

11.2. Calculus of fractions.

Definition 11.18. A family S of morphisms in A is a left multiplica-
tive system if

(i) any isomorphism belongs to S,
(ii) if f, g ∈ S and g ◦ f is defined, then g ◦ f ∈ S,
(iii) for given morphisms f, s, s ∈ S, as in the following diagram,

there exist g, t, t ∈ S, making the diagram commutative

X
g //

t
��

Y

s
��

X ′ f // Y ′,

(iv) for two given morphisms f, g : X −→ Y in A, if there exists
s ∈ S such that s ◦ f = s ◦ g, then there exists t ∈ S such that
f ◦ t = g ◦ t:

W
t

99K X
f,g−−→ Y

s−→ Z.
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Proposition 11.19. Let A be a category and S a left multiplicative
system. Then AS can be described as follows. The set of objects is
Ob(AS) = Ob(A). For X, Y ∈ Ob(A), we have HomAS (X, Y ) =
{(W, s, u); s : W −→ X is in S and u : W −→ Y is in A}/ ∼, where the
equivalence relation ∼ is given by (W, s, u) ∼ (W ′, s′, u′) if there exists
(W ′′, s′′, u′′), s′′ ∈ S, such that we have a commutative diagram

W
s

}}

u

!!
X W ′′s′′
oo u′′

//

OO

��

Y.

W ′

s′
aa

u′
==

The composition “u′s′−1us−1” is visualized by the diagram

Y ′

t
~~

v
!!

s◦t

vv

u′◦v

((
X Ws
oo

u
// Y W ′

s′
oo

u′
// Z.

where t, v, t ∈ S, are given by (iii) in Definition 11.18.

Let us go back to our abelian category C.

Proposition 11.20. Let Qis be the family of qis in K(C). Then Qis
is a left (and right) multiplicative system.

11.3. Truncation functors. Let C be an abelian category. For a given
n ∈ Z we define τ≤n, τ≥n : C(C) −→ C(C) by

τ≤n(X) = · · · −→ Xn−2 −→ Xn−1 −→ ker(dn
X) −→ 0 −→ · · ·

τ≥n(X) = · · · −→ 0 −→ coker(dn−1
X ) −→ Xn+1 −→ Xn+2 −→ · · · .

We have natural morphisms in C(C), for n ≤ m,

τ≤n(X) −→ X, X −→ τ≥n(X),
τ≤n(X) −→ τ≤m(X), τ≥n(X) −→ τ≥m(X).

We have H i(τ≤n(X)) ≃ H i(X) for i ≤ n and H i(τ≤n(X)) ≃ 0 for i > 0.
We have a similar result for τ≥n(X) and the above morphisms induce
the tautological morphisms on the cohomology (that is, the identity
morphism of H i if both groups are non-zero, or the zero morphism).

In particular the functors τ≤n, τ≥n send qis to qis and they induce
functors, denoted in the same way, on D(C), together with the same
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morphisms of functors. We see from the definition, for any X ∈ D(C)
and any i ∈ Z:
(11.2) τ≤iτ≥i(X) ≃ τ≥iτ≤i(X) ≃ H i(X)[−i].
Lemma 11.21. Let C be an abelian category and let X ∈ D(C) be an
objet concentrated in one degree i0, that is, H i(X) ≃ 0 if i ̸= i0. Then
X ≃ H i0(X)[−i0].
Proof. By the hypothesis and by the description of the cohomology
of τ≤n(X), τ≥n(X), the morphisms τ≤i0(X) −→ X and τ≤i0(X) −→
τ≥i0(τ≤i0(X)) are isomorphisms in D(C). Hence X ≃ τ≥i0(τ≤i0(X))
and we conclude with (11.2). □

11.4. The case of cohomological dimension 1. The next propo-
sition describes D−(C) when C has cohomological dimension 1, which
means that Exti(X, Y ) ≃ 0 for all i > 1 and all X, Y ∈ C. We first
give some lemmas.
Lemma 11.22. Let C be an abelian category. Then Q ∈ C is projective
if and only if Ext1(Q,M) ≃ 0 for all M ∈ C.

Proof. The “only if” statement is a particular case of the fact LiF (Q) ≃
0 for i > 0 if Q is projective and F is a right exact functor.

Conversely, let X p−→ Y −→ 0 be an epimorphism in C. We set M =
ker(p). Hence 0 −→ M −→ X −→ Y −→ 0 is an exact sequence. The long
cohomology exact sequence for the functor Hom(Q, ·) is written:

· · · −→ Hom(Q,X) −→ Hom(Q, Y ) −→ Ext1(Q,M) −→ · · ·
The hypothesis implies that Hom(Q,X) −→ Hom(Q, Y ) is an epimor-
phism, which proves that Q is projective. □

Lemma 11.23. Let C be an abelian category. We assume that for all
X, Y ∈ C we have Ext2(X, Y ) ≃ 0. Let P be a projective object and let
0 −→ Q

i−→ P be a monomorphism. Then Q is projective.

Proof. We set Z = coker(i). Let M ∈ C be any object. As in the proof
of Lemma 11.22 we have the long exact sequence

· · ·Ext1(P,M) −→ Ext1(Q,M) −→ Ext2(Z,M) −→ · · ·
Since P is projective, the first term vanishes by Lemma 11.22. The
second term vanishes by hypothesis. Hence Ext1(Q,M) ≃ 0 and Q is
projective by Lemma 11.22. □

Exercise 11.24. Let C be an abelian category with enough projec-
tives such that for all X, Y ∈ C we have Ext2(X, Y ) ≃ 0. Prove that
Exti(X, Y ) ≃ 0 for all i ≥ 2 and all X, Y ∈ C.
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Exercise 11.25. Give a generalization of Lemma 11.23 and Exer-
cise 11.24 with 2 replaced by any k ≥ 2.

Lemma 11.26. Let C be an abelian category and let 0 −→ A
i−→ B

p−→
C −→ 0 be an exact sequence in C. We assume that p has a splitting,
that is, j : C −→ B such that p ◦ j = idB. Then i has a splitting, that is,
q : B −→ A such that q ◦ i = idA. Conversely, if i splits, then p splits.
Proposition 11.27. Let C be an abelian category. We assume that
for all X, Y ∈ C we have Ext2(X, Y ) ≃ 0. We also assume that
C has enough projectives. Then for all X ∈ D−(C) we have X ≃⊕

k∈Z(Hk(X))[−k]. (We remark that ⊕
k∈Z(Hk(X))[−k] is the complex

L given by Lk = Hk(X) and dk
L = 0 for all k ∈ Z.)

Proof. (i) We use the notation L of the proposition. Since C has enough
projectives we can find P ∈ D−(C) such that P k is projective for all
k ∈ Z and an isomorphism X ≃ P in D−(C).

We will define a morphism u : P −→ L in C(C) such that u is a qis.
Then u induces the required isomorphism in D(C). This is the same
as giving, for each i, a morphism ui : P i −→ Li such that di−1

P ◦ ui = 0
and the induced morphism Zi(P )/Bi(P ) −→ Li is an isomorphism.
(ii) We recall that we have monomorphisms 0 −→ Zi(P ) −→ P i and
0 −→ Bi(P ) −→ Zi(P ). By the hypothesis on C and by Lemma 11.23 we
deduce that Zi(P ) and then Bi(P ) are projective. By (3.1) we have
the exact sequence

(11.3) 0 −→ Zi(P ) ai

−→ P i bi

−→ Bi+1(P ) −→ 0.
Since Bi+1(P ) is projective, the morphism bi in (11.3) has a splitting
and, by Lemma 11.26, there exists αi : P i −→ Zi(P ) such that αi ◦ ai =
id.

Let qi : Zi(P ) −→ H i(P ) = Li be the natural morphism. We define
ui : P i −→ Li as ui = qi ◦ αi. Since di−1 factorizes as

P i−1 f i−1
−−→ Bi(P ) gi

−→ Zi(P ) ai

−→ P i

we have ui ◦ di−1 = qi ◦ gi ◦ f i−1 and this vanishes because qi ◦ gi = 0.
We see also that the morphism Zi(P )/Bi(P ) −→ Li induced by ui is
the identity morphism of H i(P ). This concludes the proof. □

Example 11.28. We have seen that Ab has enough injectives and
that an abelian group is injective if and only if it is divisible. It follows
easily that a quotient of an injective abelian group is again injective.
We deduce that any abelian group M has an injective resolution of
length 1: 0 −→ M −→ I0 −→ I1 −→ 0. Hence Ext2(N,M) ≃ 0 for all
M,N ∈ Ab.
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11.5. Example of sheaf computation. Let X be a Hausdorff and
locally compact space, let Z ⊂ X be a closed subset and U = X \ Z.
We let j : U −→ X, i : Z −→ X be the inclusions. For F ∈ Sh(X) we set

FZ = i!i
−1(F ), FU = j!j

−1(F ).
We apply Proposition 9.11 with f = i or f = j. Then f−1(y) is empty
or a point and Γc(f−1(y);F |f−1(y)) is 0 or Fy. This gives

(11.4) (FZ)x =

Fx if x ∈ Z,
0 if x ̸∈ Z,

(FU)x =

Fx if x ∈ U ,
0 if x ̸∈ U ,

We remark that i is proper, hence i! = i∗ and FZ = i∗i
−1(F ). By the

adjunction (i−1, i∗) we have a natural morphism a : F −→ FZ . By (11.4)
we can see that ax is the identity morphism for x ∈ Z and ax = 0 for
x ̸∈ Z. Hence ax is always surjective and a is an epimorphism.

Lemma 11.29. We have FU |U ≃ F |U and there exists a unique mor-
phism b : FU −→ F such that b|U : FU |U −→ FU is the identity morphism.

Proof. If V ⊂ U we can see on the definition that FU(V ) = F (V ),
which proves the first assertion.

Now we pick any open subset V ⊂ X and s ∈ FU(V ). By definition
FU(V ) ⊂ (j∗j

−1F )(V ) = F (U ∩V ). The inclusion map supp(s) −→ V is
proper. Hence W = V \ supp(s) is open: indeed, for x ∈ W we choose
a compact neighborhood C ⊂ V of x; then C ∩ supp(s) is compact and
C \ (C ∩ supp(s)) is open and contains x; hence W contains an open
neighborhood of any of its point. Of course s|U∩V ∩W = 0. Since F is
a sheaf, there exists a unique s̃ ∈ F (V ) such that s̃|U∩V = s|U∩V and
s̃|W = 0.

We define b(V ) : FU(V ) −→ F (V ) by b(V )(s) = s̃. When V runs over
the open subsets, we can see that gives a sheaf morphism. □

Using (11.4) we see that the following excision sequence is exact
(11.5) 0 −→ FU −→ F −→ FZ −→ 0.

Lemma 11.30. Let Sn be the sphere of dimension n. Then

H i(Sn; kSn) ≃

k for i = 0, n,
0 else.

Proof. We choose a point x ∈ Sn and set Z = {x}, U = Sn \ Z.
Let i : Z −→ Sn j : U −→ Sn be the inclusions and a : Sn −→ {pt}
be the map to the point. We have a∗ = a! since Sn is compact.
Then Γ(Sn;FU) = a!j!(j−1(F )) = Γc(U ; j−1(F )) and Γ(Sn;FZ) =
a∗i∗(i−1(F )) = Γ(Z; i−1(F )) = Fx.
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By Proposition 9.11 with f = i or f = j and the fact that f−1(y) is
either epmpty or a point, we see that the functors i! and j! are exact.
Hence Ri! = i!, Rj! = j!. We see also that they send soft sheaves to soft
sheaves. Hence R(a◦ i)! ≃ Ra! ◦Ri! and R(a◦j)! ≃ Ra! ◦Rj!. It follows
that RΓ(Sn;FU) ≃ RΓc(U ;F |U) and RΓ(Sn;FZ) ≃ RΓ(Z;F |Z).

For F = kSn , the sequence (11.5) becomes 0 −→ kU −→ kSn −→ kZ −→
0. We deduce the long cohomology sequence · · · −→ H i

c(U ; kU) −→
H i(Sn; kSn) −→ H i(Z; kZ) −→ · · · Since Z is a point we conclude with
Proposition 11.13. □
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12. Exercices

Exercice 12.1. On a vu la définition de la catégorie opposée dans la
Définition 4.1. Montrer que pour Set la catégorie des ensembles, Set
et Setop ne sont pas équivalentes. (On peut sintéresser entre autres
aux objets initiaux/terminuax).
Exercice 12.2. Soit Abf la catégorie des groupes abéliens finis. On
rappelle que tout G ∈ Abf a une décomposition G ≃ Z/n1Z×Z/n2Z×
· · ·×Z/nkZ. On note G∗ = HomAb(G,S1) où S1 est le groupe (abélien)
des nombres complexes de module 1. On peut voir qu’il existe un
isomorphisme (non canonique) (Z/nZ)∗ ≃ Z/nZ, puis G∗ ≃ G pour
tout G ∈ Abf . Montrer que le morphisme naturel G −→ (G∗)∗, g 7→
(ϕ 7→ ϕ(g)), est un isomorphisme. En déduire Abop

f ≃ Abf .

Exercice 12.3. Montrer que Ab et Abop ne sont pas équivalentes.
Exercice 12.4. Soit Abf la catégorie des groupes abéliens finis. Mon-
trer que Abf n’a aucun objet projectif.
Exercice 12.5. On fixe α ∈ C, non nul. Soit U un ouvert de C∗.
On définit Fα(U) comme l’ensemble des fonctions h : U −→ C telles
que chaque z0 ∈ U a un voisinage V ⊂ U sur lequel on a h(z) =
λ exp(α log(z)) où λ ∈ C et log(z) est une branche du logarithme définie
sur V . Autrement dit, localement f(z) = λzα. (Notons que si α ∈ Z
on peut toujours définir zα alors qu’on n’a pas forcément une branche
du log définie sur V tout entier.)

Vérifier que Fα(U) est un espace vectoriel. Montrer que, si U est
connexe, alors dimFα(U) est 0 ou 1.

Vérifer que U 7→ Fα(U) est un faisceau sur C∗.
Pour θ ∈ [0, 2π[ on note Wθ le plan privé de la demi-droite R≥0 ·

exp(iθ). Montrer que Fα|Wθ
est isomorphe au faisceau constant CWθ

.
Montrer que Fα n’est pas isomorphe au faisceau constant CC∗ si

α ̸∈ Z.
Exercice 12.6. Soit F un faisceau sur un espace topologique X. Soit
u : ZX −→ F un morphisme de faisceaux. En prenant les sections sur
X on a Γ(X;u) : Γ(X;ZX) −→ Γ(X;F ) et on pose ϕ(u) = Γ(X;u)(1) ∈
Γ(X;F ) (où 1 désigne la fonction constante de valeur 1). Vérifier que
ϕ : HomSh(X)(ZX , F ) −→ Γ(X;F ) est un isomorphisme (on peut utiliser
l’adjonction (a−1, a∗), a : X −→ {pt}).

Soit U un ouvert deX. On définit un préfaisceau PZU par PZU(V ) =
Z si V ⊂ U et PZU(V ) = 0 sinon. Soit ZU le faisceau associé à PZU .
Montrer que HomPsh(X)(PZU , F ) ≃ F (U) puis HomSh(X)(ZU , F ) ≃
F (U).
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Exercice 12.7. Soit X un espace topologique connexe. Soit U un ou-
vert connexe de X et A un groupe abélien. Vérifer que AU(U) = A.
Soit U, V ⊂ X deux ouverts connexes tels que U ∪ V = X. Soit F un
faisceau sur X et A,B deux groupes abéliens tels qu’il existe des iso-
morphismes F |U ≃ AU , F |V ≃ BV . Montrer que A ≃ B. Soit x ∈ U .
On a Fx ≃ (AU)x = A. Montrer que le morphisme naturel r : F (X) −→
Fx = A est injectif. On suppose que r est un isomorphisme. Montrer
que F ≃ AX (on peut s’inspirer de l’exercice (12.6) pour constru-
ire un morphisme de AX vers F : par adjonction HomSh(X)(AX , F ) ≃
HomAb(A,F (X))).

Exercice 12.8. Soit X un espace topologique localement compact (si
on préfère on peut supposer que X est un fermé de Rn).

Soit j : W ↪→ X l’inclusion d’un sous-ensemble de X. On met sur
W la topologie induite. On note ZW ∈ Sh(W ) le faisceau constant.

Montrer que, si W est ouvert ou fermé et F ∈ Sh(W ), on a (j!F )x =
0 pour x ̸∈ W et j−1(F ) = F .

Dans R2 on définit W = {0} ∪ ]0, 1[2. Montrer que (j!ZW )0 = 0.
On dit que W est localement fermé si on peut écrire W = U ∩Z avec

U ouvert et Z fermé (c’est équivalent à, pour chaque x ∈ W , il existe Ω
ouvert de Rn tel que W ∩Ω est fermé dans Ω). En écrivant j = j2 ◦ j1,
j1 : W −→ U , j2 : U −→ Rn vérifier qu’on a encore, pour F ∈ Sh(W ),
(j!F )x = 0 pour x ̸∈ W et j−1(F ) = F .

Notation 12.9. Soit X un espace topologique localement compact (si
on préfère on peut supposer que X est un fermé de Rn). Soit U ⊂ X
un ouvert et Z = X \ U . On pose ZX,U = j!(ZU) où j : U −→ X est
l’inclusion et de même ZX,Z = i!(ZZ) où i est l’inclusion de Z. Ainsi
ZX,U = (ZX)U , ZX,Z = (ZX)Z avec les notations de §11.5. On a la suite
exacte (11.5) 0 −→ ZX,U −→ ZX −→ ZX,Z −→ 0. (Il n’est pas trop dur
de vérifier qu’on a bien les mêmes faisceaux que dans les exercices 2.32
et 2.40.)

Exercice 12.10. Soit C le cercle de centre (0, 0) et de rayon 1 dans R2

et p : R2 −→ R la projection (x, y) 7→ x. On utilise les notations 12.9.
Soit I = [−1, 1], J = ]−1, 1[. On veut montrer que p∗(ZR2,C) =

ZR,I ⊕ ZR,J .
(i) Soit D le disque fermé de centre (0, 0) et de rayon 1. Soit I ′ ⊂ C
le demi- cercle I ′ = C ∩ (R× [0,+∞[). On remarque que I ′ est fermé
dans C et C fermé dans D, d’où des morphismes u : ZR2,D −→ ZR2,C et
v : ZR2,C −→ ZR2,I′ .

Montrer que p∗(ZR2,D) = ZR,I et p∗(ZR2,I′) = ZR,I . Montrer que
p∗(v ◦ u) = idZR,I

.
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Soit J ′ = C \ I ′. Montrer que p∗(ZR2,J ′) = ZR,J .
(ii) On a la suite exacte 0 −→ ZR2,J ′ −→ ZR2,C −→ ZR2,I′ −→ 0. Montrer
qu’on a aussi la suite exacte 0 −→ ZR,J −→ p∗(ZR2,C) −→ ZR,I −→ 0.
(iii) Montrer le fait général: dans une catégorie abélienne, si on a une
suite exacte 0 −→ A

i−→ B
p−→ C −→ 0 et un morphisme q : B −→ A tel

que q ◦ i = idA (on dit que la suite est scindée), alors le morphisme(
q
p

)
: B −→ A⊕C est un isomorphisme. (On peut montrer que les noyaux

et conoyaux de
(

q
p

)
sont nuls: pour f : X −→ B tel que

(
q
p

)
◦ f = 0 on

montre d’abord que f factorise par i : A −→ B, pour (a, c) : A⊕C −→ Y

tel que (a, c) ◦
(

q
p

)
= 0, on voit d’abord que a = (a, c) ◦

(
q
p

)
◦ i = 0.)

Exercice 12.11. Soit F : C −→ C ′ un foncteur exact entre catégories
abéliennes. On suppose que C a assez d’injectifs. Montrer queRiF (X) =
0 pour tout i > 0 et tout X ∈ C. (On peut montrer que F envoie une
suite exacte (longue) sur une suite exacte ou utiliser le Lemme 10.6.)

Exercice 12.12. Soit f : X −→ Y une application continue entre es-
paces topologiques localement compacts. On suppose que, pour tout
y ∈ Y , f−1(y) est un ensemble fini. Montrer que f! : Sh(X) −→ Sh(Y )
est un foncteur exact.

Exercice 12.13. Soit X = S2n−1 la sphère de dimension 2n − 1. On
considère un groupe cyclique G = Z/kZ agissant librement sur X (voir
exemple ci-dessous) et on note Y = X/G le quotient, q : X −→ Y
l’application quotient. On veut calculer H∗(Y ;ZY ).

(1) On pose F = q∗(ZX). En utilisant les exercices 12.11 et 12.12
montrer que H i(Y ;F ) ≃ H i(X;ZX).

(2) Soit V ⊂ Y un ouvert et U = q−1(V ). Le groupe G préserve U ;
on note g · x l’action, pour g ∈ G, x ∈ U . Soit F(U) l’ensemble
des fonctions sur U ; G a une action induite sur F(U) définie
par g · f(x) = f(g−1 · x), où f ∈ F(U), g ∈ G, x ∈ U (pourquoi
g−1 à l’intérieur de f?). Déduire que G agit sur F (V ).

Soit y ∈ V . On a Fy ≃
⊕

x∈q−1(y)(ZX)x ≃ Zq−1(y). Le groupe
G agit sur q−1(y) et donc sur Fy ≃ Zq−1(y). Montrer que nos
actions commutent avec l’application naturelle F (V ) −→ Fy.

(3) On remarque que ZX ≃ q−1(ZY ). En utilisant l’adjonction
(q−1, q∗) on a un morphisme a : ZY −→ F . Pour y ∈ Y on a les
isomorphismes naturels (ZY )y ≃ Z et Fy ≃ Zq−1(y). Décrire ay

via ces isomorphismes.
(4) Soit yi ∈ Y et Vi un voisinage connexe de yi assez petit pour que

q−1(Vi) = ⊔k
j=1 U

k
i (union disjointe de k composantes connexes;
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c’est possible car q est un revêtement à |G| = k feuillets). On a
F |Vi

≃ Zk
Vi

et on définit bi : F |Vi
−→ ZVi

par bi(V )(f1, . . . , fk) =
f1 + · · · + fk, pour V ⊂ Vi. On recouvre Y par de tels ouverts
Vi, i ∈ I. Vérifier que les bi se recollent en un morphisme de
faisceaux b : F −→ ZY (on peut utiliser l’exercice 7.7). Montrer
que b ◦ a : ZY −→ ZY est la multiplication par k.

(5) On a vu que G agit sur F (V ), pour tout V ⊂ Y . Pour g ∈ G on
note µg(V ) : F (V ) −→ F (V ) l’action de g. Vérifier que les µg(V )
donnent un morphisme de faisceau µg : F −→ F . On note 1 un
générateur de G. On définit u : F −→ F , u = idF − µ1. Montrer
qu’on a la suite exacte 0 −→ ZY

a−→ F
u−→ F

b−→ ZY −→ 0.
(6) On note L = coker(a) = ker(b) et on a deux suites exactes

courtes 0 −→ ZY
a−→ F −→ L −→ 0, 0 −→ L −→ F

b−→ ZY −→ 0. On
connaît H i(Y ;F ) = H i(X;ZX). Vérifier que H0(Y ; a) = idZ et
H0(Y ; b) = k idZ . Montrer par récurrence

H0(Y ;ZY ) = Z,
H i(Y ;ZY ) = Z/kZ, pour i pair et 0 < i < 2n− 2,

H2n−1(Y ;ZY ) = Z,
H i(Y ;ZY ) = 0, sinon

(on sait que H i(Y ;F ′) = 0 pour tout faisceau F ′ et i > dim Y =
2n− 1).

Les exemples de variétés Y comme dans l’exercice sont les espaces
lenticulaires. On voit la sphère X = S2n−1 dans Cn = R2n. On note
S1 le cercle unité de C. Alors (S1)n agit sur Cn par multiplication
(s1, . . . , sn) · (z1, . . . , zn) = (s1z1, . . . , snzn) et cette action préserve X.
On définit une injection i : Z/kZ −→ (S1)n de façon que la projection
sur chaque coordonnée soit encore injective: on choisit p1, . . . , pn des
entiers tous premiers à k et on définit i([m]) = (ζmp1 , . . . , ζmpn), où ζ =
exp(2iπ/k). Alors l’action de Z/kZ sur X est libre (seul 0 a des points
fixes). On note Lk;p1,...,pn = X/(Z/kZ). Plus spécialement en dimension
3 on note Lp/k = Lk;1,p. Ce sont les premiers exemples de variétés
différentielles homotopes mais non homéomorphes (par exemple L1/7
et L2/7 sont homotopes mais non homéomorphes).
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13. Examen

Exercice 13.1. Soit C une catégorie abélienne et soit X f−→ Y
g−→ Z

deux morphismes dans C. On suppose que ker(g ◦ f) = 0. Montrer que
ker(f) = 0.
Exercice 13.2.
(1) Soit X un espace topologique, F un faisceau sur X, U ⊂ X un
ouvert et s ∈ F (U). Soit x ∈ U tel que sx = 0. Montrer qu’il existe un
voisinage V ⊂ U de x tel que s|V = 0.
(2) Donner un exemple de faisceau F sur X = R et tel que F0 = 0 mais
0 n’a aucun voisinage ouvert V tel que F |V = 0.
Exercice 13.3. Soit C, C ′ des categories abéliennes et soit R : C ′ −→ C,
L : C −→ C ′ des foncteurs additifs tels que R est adjoint à droite de L.
Montrer que R est exact à gauche.
Exercice 13.4.
(1) Soit Z un ensemble muni de la topologie discrète (chaque point
forme un ensemble ouvert). Soit F un faisceau sur Z. Vérifier que
Γc(Z;F ) ≃⊕

z∈Z Fz.
(2) Soit f : X −→ Y une application continue entre espaces topologiques
localement compacts. On suppose que, pour tout y ∈ Y , f−1(y) est un
ensemble discret. Montrer que f! : Sh(X) −→ Sh(Y ) est un foncteur
exact.
Exercice 13.5. Dans R2 on définit W = {0} ∪ ]0, 1[2. Montrer que
(j!ZW )0 = 0. Est-ce que j! est exact?
Exercice 13.6. Soit ZR,ZR,[0,1] ∈ Sh(R) respectivement le faisceau
constant sur R et le faisceau constant sur l’intervalle [0, 1]. Montrer
que Hom(ZR,[0,1],ZR) = 0.
Exercice 13.7. Soit C une catégorie abélienne et soit Mor(C) la caté-
gorie des morphismes de C. On rappelle que les objects de Mor(C)
sont les morphismes (X f−→ X ′) de C et les morphismes de Mor(C) sont
les carrés commutatifs: HomMor(C)((X u−→ X ′), (Y v−→ Y ′)) = {(f, f ′);
f : X −→ Y , f ′ : X ′ −→ Y ′, v ◦ f = f ′ ◦ u}.

On admet que Mor(C) est abélienne et ker(f, f ′) = (ker(f) −→ ker(f ′)),
coker(f, f ′) = (coker(f) −→ coker(f ′)).
(1) Montrer que ker : Mor(C) −→ C, (X u−→ X ′) 7→ ker(u) est un foncteur
exact à gauche.
(2) Soit E ⊂ Mor(C) la famille des épimorphismes. Montrer que E est
ker-injective.
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On rappelle qu’une famille J dans une catégorie abélienne D est
F -injective si

(i) pour tout X ∈ Ob(D) il existe J ∈ J et un monomorphisme
0 −→ X −→ J ,

(ii) pour toute suite exacte 0 −→ X ′ −→ X −→ X ′′ −→ 0 dans D, si
X ′ ∈ J et X ∈ J , alors X ′′ ∈ J ,

(iii) pour toute suite exacte 0 −→ X ′ −→ X −→ X ′′ −→ 0 dans D, avec
X ′, X,X ′′ ∈ J , la suite 0 −→ F (X ′) −→ F (X) −→ F (X ′′) −→ 0 est
exacte.

(3) Donner pour chaque (X u−→ X ′) ∈ Mor(C) une résolution à deux
termes dans E :

0 // X //

u
��

X0 //

u0
����

X1 //

u1
����

0

0 // X ′ // X ′0 // X ′1 // 0
et montrer que R1 ker = coker.
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