SHORT LECTURE ON SHEAVES AND DERIVED CATEGORIES

STÉPHANE GUILLERMOU

Abstract

Extended notes of the first lecture of a minicourse in Montreal, June 2019.

1. Sheaves

In this section \mathbf{k} is a given ring.
1.1. Definition. A presheaf P (of \mathbf{k}-modules) on a topological space X is the data of \mathbf{k}-modules $P(U)$ for all open subsets U of X together with linear maps $r_{U}^{V}: P(U) \rightarrow P(V)$ for all inclusions $V \subset U$ such that $r_{V}^{W} \circ r_{U}^{V}=r_{U}^{W}$ for $W \subset V \subset U$. For a section $s \in P(U)$ we usually set $\left.s\right|_{V}=r_{U}^{V}(s)$. A sheaf F is a presheaf such that, for any covering $U=\bigcup_{i \in I} U_{i}$ and sections $s_{i} \in F\left(U_{i}\right)$ satisfying $\left.s_{i}\right|_{U_{i j}}=\left.s_{i}\right|_{U_{i j}}$, there exists a unique $s \in F(U)$ such that $s_{i}=\left.s\right|_{U_{i}}$.

We often set $\Gamma(U ; F)=F(U)$.
The stalk of a presheaf at $x \in X$ is $P_{x}=\lim _{U \in X} P(U)$, where U runs over the open neighborhoods of x.

A morphism of presheaves $f: P \rightarrow P^{\prime}$ is the data of groups morphisms $f(U): P(U) \rightarrow P^{\prime}(U)$ which commute with the restriction maps, that is, $r_{V, U}^{\prime} \circ f(U)=f(V) \circ r_{V, U}$, for all $V \subset U \subset X$. A morphism of sheaves is a morphism of the underlying presheaves.

We denote by $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$ the category of sheaves of \mathbf{k}-modules on X.
Examples 1.1. (i) The constant sheaf \mathbf{k}_{X} on X is defined by $\mathbf{k}_{X}(U)=$ $\{f: U \rightarrow \mathbf{k} ; f$ is locally constant $\}$. If N is a \mathbf{k}-module, we define N_{X}, the constant sheaf with stalks N, in the same way.
(ii) If $Z \subset X$ is a closed subset, we define $\mathbf{k}_{X, Z}$ (or \mathbf{k}_{Z} if X is understand) by $\mathbf{k}_{X, Z}(U)=\{f: U \cap Z \rightarrow \mathbf{k}$; f is locally constant $\}$.

A morphism u in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$ is an isomorphism if and only if u_{x} is an isomorphism for all $x \in X$.

Lemma 1.2 (Associated sheaf of a presheaf). Let X be a topological space and let $P \in \mathcal{P}(X)$. There exist a sheaf P^{a} and a morphism of
presheaves $u: P \rightarrow P^{a}$ such that u_{x} is an isomorphism, for each $x \in X$. Moreover the pair $\left(P^{a}, u\right)$ is unique up to isomorphism.

Any morphism v in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$ has a kernel, given by $U \mapsto \operatorname{ker} v(U)$, and a cokernel, given by $(U \mapsto \operatorname{coker} v(U))^{a}$. The category $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$ is abelian (which means that it is additive, kernel and cokernel exist and are well-behaved in the sense " $\operatorname{ker}(\operatorname{coker}(v)) \simeq \operatorname{coker}(\operatorname{ker}(v))$ "). We can also check: a sequence $F \xrightarrow{u} G \xrightarrow{v} H$ in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$ is exact if and only if the sequences of stalks $F_{x} \xrightarrow{u_{x}} G_{x} \xrightarrow{v_{x}} H_{x}$ are exact for all $x \in X$.

1.2. Operations.

Proposition 1.3. Let $F_{i}, i \in I$, be a family of sheaves in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$. Then the product $\prod_{i \in I} F_{i}$ and the sum $\bigoplus_{i \in I} F_{i}$ exist in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$. The product is the sheaf defined by $\Gamma\left(U ; \prod_{i \in I} F_{i}\right)=\prod_{i \in I} \Gamma\left(U ; F_{i}\right)$ for any open subset U. The sum is the sheaf associated with the presheaf $U \mapsto$ $\bigoplus_{i \in I} \Gamma\left(U ; F_{i}\right)$. For any $x \in X$ we have a canonical isomorphism

$$
\begin{equation*}
\left(\bigoplus_{i \in I} F_{i}\right)_{x} \simeq \bigoplus_{i \in I}\left(F_{i}\right)_{x} \tag{1.1}
\end{equation*}
$$

Definition 1.4. For $F, G \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ we define a sheaf $\mathcal{H o m}(F, G) \in$ $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$, the internal hom sheaf, by

$$
\Gamma(U ; \mathcal{H o m}(F, G))=\operatorname{Hom}_{\operatorname{Mod}\left(\mathbf{k}_{U}\right)}\left(\left.F\right|_{U},\left.G\right|_{U}\right)
$$

We define the tensor product $F \otimes_{\mathbf{k}_{X}} G$ as the sheaf associated with the presheaf $U \mapsto F(U) \otimes_{\mathbf{k}} G(U)$.

We can prove

$$
\begin{equation*}
\left(F \otimes_{\mathbf{k}_{X}} G\right)_{x} \simeq F_{x} \otimes_{\mathbf{k}} G_{x}, \quad \text { for all } x \in X \tag{1.2}
\end{equation*}
$$

Lemma 1.5. The functor \mathcal{H} om (\cdot, \cdot) is left exact in both arguments. The functor $\cdot \otimes_{\mathbf{k}_{X}} \cdot$ is right exact in both arguments, and exact if \mathbf{k} is a field.

Let $f: X \rightarrow Y$ be a continuous map between topological spaces.
Definition 1.6. For $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ we define a sheaf $f_{*} F \in \operatorname{Mod}\left(\mathbf{k}_{Y}\right)$ by $\left(f_{*} F\right)(V)=F\left(f^{-1}(V)\right)$ for any open subset $V \subset Y$, with the restriction maps naturally given by those of F (it is clear that $f_{*} F$ is a presheaf and it is easy to check that it is actually a sheaf).

If $u: F \rightarrow G$ is a morphism in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$, we define $f_{*} u: f_{*} F \rightarrow$ $f_{*} G$ by $\left(f_{*} u\right)(V)=u\left(f^{-1}(V)\right)$. We obtain a functor $f_{*}: \operatorname{Mod}\left(\mathbf{k}_{X}\right) \rightarrow$ $\operatorname{Mod}\left(\mathbf{k}_{Y}\right)$.

Lemma 1.7. For any continuous map $f: X \rightarrow Y$, the functor f_{*} is left exact.

Definition 1.8. For $G \in \operatorname{Mod}\left(\mathbf{k}_{Y}\right)$ we define a presheaf $f^{\dagger} G$ on X by $\left(f^{\dagger} G\right)(U)=\lim _{\longrightarrow \supset f(U)} G(V)$, where V runs over the open neighborhoods of $f(U)$ in Y. The restriction maps are naturally induced by those of G. We set $f^{-1} G=\left(f^{\dagger} G\right)^{a}$.

A morphism $u: F \rightarrow G$ induces morphisms on the inductive limits, $\left(f^{\dagger} u\right)(U):\left(f^{\dagger} F\right)(U) \rightarrow\left(f^{\dagger} G\right)(U)$, for all $U \in \mathrm{Op}(X)$, which are compatible and define $f^{\dagger} u: f^{\dagger} F \rightarrow f^{\dagger} G$. We set $f^{-1} u=\left(f^{\dagger} u\right)^{a}$. We thus obtain a functor $f^{-1}: \operatorname{Mod}\left(\mathbf{k}_{Y}\right) \rightarrow \operatorname{Mod}\left(\mathbf{k}_{X}\right)$.

Lemma 1.9. The functor f^{-1} is left adjoint to f_{*}. In particular there exist natural isomorphisms $\operatorname{Hom}\left(f^{-1} G, F\right) \simeq \operatorname{Hom}\left(G, f_{*} F\right)$ for all $F \in$ $\operatorname{Mod}\left(\mathbf{k}_{X}\right), G \in \operatorname{Mod}\left(\mathbf{k}_{Y}\right)$.

When $f: X \rightarrow Y$ is an embedding we often write

$$
\left.G\right|_{X}:=f^{-1} G
$$

If f is the inclusion of an open set, we have $\left(\left.G\right|_{X}\right)(U)=G(U)$, for all $U \in \operatorname{Op}(X)$.

Example 1.10. Let X be a Hausdorff topological space and $Z \subset X$ a compact subset. Then, for any $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ and $V \in \operatorname{Op}(Z)$, we have $\left(\left.F\right|_{Z}\right)(V) \simeq{\underset{\longrightarrow}{\lim }}_{U \supset V} F(U)$, where U runs over the open neighborhoods of V in X.

Lemma 1.11. Let $f: X \rightarrow Y$ be a continuous map and let $x \in Y$. For any $F \in \operatorname{Mod}\left(\mathbf{k}_{Y}\right)$ we have a natural isomorphism $\left(f^{-1} F\right)_{x} \simeq F_{f(x)}$.

Since the exactness of a sequence of sheaves can be checked in the stalks we deduce:

Lemma 1.12. For any continuous map $f: X \rightarrow Y$, the functor f^{-1} is exact.
1.3. Locally closed subsets. A subset W of X is locally closed subset if we can write $W=U \cap Z$ with U open and Z closed.

Lemma 1.13. Let $W \subset X$ be a locally closed subset and $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$. Then there exists a unique sheaf $F_{W} \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ such that $\left.F_{W}\right|_{W} \simeq$ $\left.F\right|_{W}$ and $\left.F_{W}\right|_{X \backslash W} \simeq 0$. Moreover we have $F_{W} \simeq F \otimes\left(\mathbf{k}_{X}\right)_{W}$.

We set for short $\mathbf{k}_{X, W}=\left(\mathbf{k}_{X}\right)_{W}$ and even $\mathbf{k}_{W}=\mathbf{k}_{X, W}$ when it is clear that we consider sheaves on X.

Example 1.14. If W is closed in X, the sheaf \mathbf{k}_{W} is already defined in Example 1.1. In general we have $\mathbf{k}_{W}(U) \simeq\{f: U \cap W \rightarrow \mathbf{k} ; f$ is locally constant and $\{x ; f(x) \neq 0\}$ is closed in $U\}$.

Lemma 1.15 (Excision). Let $W \subset X$ be a locally closed subset and let $W^{\prime} \subset W$ be a closed subset of W. Then W^{\prime} and $W \backslash W^{\prime}$ are locally closed in X and we have an exact sequence:

$$
0 \rightarrow \mathbf{k}_{W \backslash W^{\prime}} \rightarrow \mathbf{k}_{W} \rightarrow \mathbf{k}_{W^{\prime}} \rightarrow 0
$$

Lemma 1.16 (Mayer-Vietoris). Let $Z_{1}, Z_{2} \subset X$ be closed subsets and $U_{1}, U_{2} \subset X$ open subsets. We have exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathbf{k}_{Z_{1} \cup Z_{2}} \rightarrow \mathbf{k}_{Z_{1}} \oplus \mathbf{k}_{Z_{2}} \rightarrow \mathbf{k}_{Z_{1} \cap Z_{2}} \rightarrow 0 \\
& 0 \rightarrow \mathbf{k}_{U_{1} \cap U_{2}} \rightarrow \mathbf{k}_{U_{1}} \oplus \mathbf{k}_{U_{2}} \rightarrow \mathbf{k}_{U_{1} \cup U_{2}} \rightarrow 0
\end{aligned}
$$

1.4. Proper direct image. A topological space X is locally compact if, for any $x \in X$ and any neighborhood U of x, there exists a compact neighborhood of x contained in U. Now we assume X, Y are Hausdorff and locally compact. Then a map $f: X \rightarrow Y$ is proper if the inverse image of any compact subset of Y is compact.

Definition 1.17. Let $f: X \rightarrow Y$ be a continuous map of Hausdorff and locally compact spaces. For $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ we define a subsheaf $f_{!} F \in \operatorname{Mod}\left(\mathbf{k}_{Y}\right)$ of $f_{*} F$ by

$$
\left(f_{!} F\right)(V)=\left\{s \in\left(f^{-1}(V)\right) ;\left.f\right|_{\text {supp } s}: \operatorname{supp}(s) \rightarrow V \quad \text { is proper }\right\}
$$

for any open subset $V \subset Y$. If $u: F \rightarrow G$ is a morphism in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$, the morphism $f_{*} u: f_{*} F \rightarrow f_{*} G$ sends $f_{!} F$ to $f_{!} G$. We obtain a functor $f_{!}: \operatorname{Mod}\left(\mathbf{k}_{X}\right) \rightarrow \operatorname{Mod}\left(\mathbf{k}_{Y}\right)$.

If the map f itself is proper, then we have $f_{!} \xrightarrow{\sim} f_{*}$.
Lemma 1.18. The functor $f_{!}$is left exact.
For $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ and $U \in \operatorname{Op}(X)$ we set

$$
\Gamma_{c}(U ; F)=\{s \in F(V) ; \operatorname{supp}(s) \text { is compact. }\}
$$

We have $\Gamma_{c}(U ; F) \simeq a_{!}\left(\left.F\right|_{U}\right)$, where a is the projection $U \rightarrow\{\mathrm{pt}\}$.
Proposition 1.19. Let $f: X \rightarrow Y$ be as in Definition 1.17. For any $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ and $y \in Y$ we have

$$
\left(f_{!} F\right)_{y} \simeq \Gamma_{c}\left(f^{-1}(y) ;\left.F\right|_{f^{-1}(y)}\right)
$$

Example 1.20. In the situation of Lemma 1.13 let $j: Z \rightarrow X$ be the inclusion. Then $\mathbf{k}_{X, Z} \simeq j!\mathbf{k}_{Z}$ and $F_{Z} \simeq j!j^{-1} F$.
1.5. Enough injectives in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$. We first remark the following general result.

Lemma 1.21. Let $f: X \rightarrow Y$ be a continuous map and assume that $I \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ is injective. Then $f_{*} I \in \operatorname{Mod}\left(\mathbf{k}_{Y}\right)$ is injective.

Proof. The injectivity of $f_{*}(I)$ means that the map

$$
\operatorname{Hom}_{\mathcal{C}^{\prime}}\left(G, f_{*} I\right) \rightarrow \operatorname{Hom}_{\mathcal{C}^{\prime}}\left(F, f_{*} I\right)
$$

is surjective, for all monomorphism $0 \rightarrow F \rightarrow G$ in $\operatorname{Mod}\left(\mathbf{k}_{Y}\right)$. Since f^{-1} is exact, $f^{-1} F \rightarrow f^{-1} G$ is also a monomorphism and the injectivity of I gives the surjectivity of

$$
\operatorname{Hom}_{\mathcal{C}}\left(f^{-1} G, I\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(f^{-1} F, I\right)
$$

The result follows since $\left(f^{-1}, f_{*}\right)$ is an adjoint pair.
Let X be a topological space and let X^{d} be the set X endowed with the discrete topology (that is, any subset is open). The identity map $i: X^{d} \rightarrow X$ is continuous. For any $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ the adjunction $\left(i^{-1}, i_{*}\right)$ gives a morphism

$$
\begin{equation*}
\varepsilon_{F}: F \rightarrow i_{*} i^{-1} F . \tag{1.3}
\end{equation*}
$$

For $U \in \operatorname{Op}(X)$ we have $\left(i_{*} i^{-1} F\right)(U) \simeq \prod_{x \in U} F_{x}$. We deduce:
Lemma 1.22. For any $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ the adjunction morphism (1.3) is a monomorphism.

We remark that sheaves on X^{d} are easy to describe: $\mathcal{P}_{\mathbf{k}}\left(X^{d}\right) \xrightarrow{\sim}$ $\operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right) \simeq(\operatorname{Mod}(\mathbf{k}))^{X^{d}}$, that is, a sheaf $F \in \operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right)$ is a family of \mathbf{k}-modules F_{x} indexed by X. The exactness of a sequence is checked pointwise. We deduce that, if F_{x} is injective in $\operatorname{Mod}(\mathbf{k})$ for all $x \in X$, then $F=\left\{F_{x}\right\}_{x \in X}$ is injective in $\operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right)$. In particular $\operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right)$ has enough injectives: for a given $F=\left\{F_{x}\right\}_{x \in X}$ we choose a monomorphism $F_{x} \rightarrow I_{x}$, for all $x \in X$, where I_{x} is injective (which is possible since $\operatorname{Mod}(\mathbf{k})$ has enough injectives). Then $I=\left\{I_{x}\right\}_{x \in X}$ is injective in $\operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right)$ and $F \rightarrow I$ is a monomorphism.

Proposition 1.23. For any topological space $X, \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ has enough injectives.

Proof. Let $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$. We have remarked that $\operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right)$ has enough injectives. Hence there exists a monomorphism $i^{-1} F \rightarrow I$ in $\operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right)$ with I injective. Since i_{*} is left exact it induces a monomorphism $i_{*} i^{-1} F \rightarrow i_{*} I$ in $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$. Composing with (1.3) and using Lemma 1.22 we have a monomorphism $F \rightarrow i_{*} I$. By Lemma 1.21 the sheaf $i_{*} I$ is injective and we obtain the result.

We remark that if \mathbf{k} is a field, any sheaf in $\operatorname{Mod}\left(\mathbf{k}_{X^{d}}\right)$ is injective and the morphism (1.3) is already a monomorphism from F to an injective object. In this situation the standard way of building an injective resolution of a given F (that is, we start with $I^{0}=i_{*} i^{-1} F$ and apply the procedure to $\operatorname{coker} \varepsilon_{F}$, defining $I^{1}=i_{*} i^{-1}\left(\operatorname{coker} \varepsilon_{F}\right)$, then to coker d^{1}, \ldots) gives the so called Godement resolution of F.
1.6. Derived functors. By Proposition 1.23 all left exact functors from $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$ to an abelian category have a right derived functor (see Definition 2.18 below). In particular we can consider RHom (the derived functor of Hom from $\operatorname{Mod}\left(\mathbf{k}_{X}\right)$ to the category of Abelian groups), $\mathrm{RHom}, \mathrm{R} f_{*}$ and $\mathrm{R} f_{!}$. For an open subset $U \subset X$ we have the left exact functors $\Gamma(U ; \cdot)$ and $\Gamma_{c}(U ; \cdot)$. Their derived functors are denoted $\mathrm{R} \Gamma(U ; \cdot)$ and $\mathrm{R} \Gamma_{c}(U ; \cdot)$. We also use

$$
H^{i}(U ; F):=H^{i} \mathrm{R} \Gamma(U ; F), \quad H_{c}^{i}(U ; F):=H^{i} \mathrm{R} \Gamma_{c}(U ; F) .
$$

We can also prove that the tensor product has a left derived functor, denoted $\stackrel{\text { L }}{\otimes}$.

An example: the cohomology of an interval. A sheaf F on X is flabby if, for any open subset $U \subset X$, the restriction morphism $F(X) \rightarrow F(U)$ is surjective. We can check that, when \mathbf{k} is a field, flabby is the same thing as injective. Let $f: X \rightarrow Y$ be a continuous map. The family of flabby sheaves is f_{*}-injective, which implies that we can compute $\mathrm{R} f_{*}(F)$ using a flabby resolution of F. We apply this result to the computation of $H^{i}\left(\mathbb{R} ; \mathbf{k}_{[a, b]}\right)$ for a closed interval $[a, b]$ of \mathbb{R}.

We recall the monomorphism (1.3) $\epsilon: \mathbf{k}_{[a, b]} \rightarrow i_{*} i^{-1} \mathbf{k}_{[a, b]}$, where i is the map from \mathbb{R} with the discrete topology to \mathbb{R}. We can identify $i_{*} i^{-1} \mathbf{k}_{[a, b]}$ with the sheaf $\mathcal{F}_{[a, b]}$ of functions on $[a, b]$ defined by $\mathcal{F}_{[a, b]}(U)=\{f: U \cap[a, b] \rightarrow \mathbb{R}\}$. This sheaf is flabby since we can extend a function defined on $U \cap[a, b]$ arbitrarily to a function defined on $[a, b]$. We define $G=\operatorname{coker}(\epsilon)$ and we have the short exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathbf{k}_{[a, b]} \rightarrow \mathcal{F}_{[a, b]} \rightarrow G \rightarrow 0 \tag{1.4}
\end{equation*}
$$

Lemma 1.24. For any open subset $U \subset \mathbb{R}$ the sequence (1.4) gives the exact sequence of sections:

$$
\begin{equation*}
0 \rightarrow \Gamma\left(U ; \mathbf{k}_{[a, b]}\right) \xrightarrow{a(U)} \Gamma\left(U ; \mathcal{F}_{[a, b]}\right) \xrightarrow{b(U)} \Gamma(U ; G) \rightarrow 0 . \tag{1.5}
\end{equation*}
$$

Proof. Long exercise.
Lemma 1.25. The sheaf G of (1.4) is flabby.

Proof. Let $U \subset \mathbb{R}$ and $s \in G(U)$ be given. By Lemma 1.24 there exists $s^{\prime} \in \mathcal{F}_{[a, b]}(U)$ such that $b(U)\left(s^{\prime}\right)=s$. Since $\mathcal{F}_{[a, b]}$ is flabby, there exists $t^{\prime} \in \mathcal{F}_{[a, b]}(\mathbb{R})$ such that $\left.t^{\prime}\right|_{U}=s^{\prime}$. Then $t=b(\mathbb{R})\left(t^{\prime}\right)$ satisfies $\left.t\right|_{U}=s$.

Hence (1.4) gives a flabby resolution of $\mathbf{k}_{[a, b]}$. We deduce that for any open subset U of \mathbb{R}

$$
H^{i}\left(U ; \mathbf{k}_{[a, b]}\right) \simeq H^{i}\left(0 \rightarrow \Gamma\left(U ; \mathcal{F}_{[a, b]}\right) \xrightarrow{b(U)} \Gamma(U ; G) \rightarrow 0\right) .
$$

By Lemma 1.24 the morphism $b(U)$ is surjective and we obtain that the cohomology of $\mathbf{k}_{[a, b]}$ is concentrated in degree 0 :

Proposition 1.26. Let $[a, b]$ be a closed interval in \mathbb{R}. For any open interval U of \mathbb{R} such that $U \cap[a, b] \neq \emptyset$, we have

$$
H^{0}\left(U ; \mathbf{k}_{[a, b]}\right) \simeq \mathbf{k} \quad \text { and } \quad H^{i}\left(U ; \mathbf{k}_{[a, b]}\right) \simeq 0 \quad \text { for } i \neq 0
$$

We can prove in the same way that, if B is a closed ball in \mathbb{R}^{n}, then $H^{*}\left(\mathbb{R}^{n} ; \mathbf{k}_{B}\right)$ is concentrated in degree 0 , where it is \mathbf{k}. We can deduce that $H^{*}\left(X ; \mathbf{k}_{X}\right)$ is concentrated in degree 0 , as soon as X is contractible (see [3, §2.7]). Using the sequences of the next paragraph it follows that the Eilenberg-Steenrod axioms are satisfied and we have $H^{*}\left(X ; \mathbf{k}_{X}\right) \simeq H^{*}(X ; \mathbf{k})$ for any CW complex X. Let us rewrite this as follows.

Theorem 1.27. Let $Z \subset X$ be a closed subset. If Z is a $C W$ complex, then $H^{*}\left(X ; \mathbf{k}_{Z}\right)$ is isomorphic to the singular cohomology $H^{*}(Z ; \mathbf{k})$ of Z.
1.7. Relations between functors. Let us introduce some notations.

Definition 1.28. For a locally closed subset $Z \subset X$ and $F \in \operatorname{Mod}\left(\mathbf{k}_{X}\right)$ we set $\Gamma_{Z}(F)=\mathcal{H o m}\left(\mathbf{k}_{Z}, F\right)$. For an open subset $U \subset X$ we set $\Gamma_{Z}(U ; F)=\Gamma\left(U ; \Gamma_{Z}(F)\right)$.

Lemma 1.29. Let Z be locally closed and U be open.
If Z is closed, we have $\Gamma\left(U ; \Gamma_{Z}(F)\right) \simeq\{s \in F(U) ; \operatorname{supp}(s) \subset Z \cap U\}$.
If Z is open, we have $\Gamma\left(U ; \Gamma_{Z}(F)\right) \simeq F(U \cap Z)$.
The functor $\Gamma_{Z}(\cdot)$ is left exact and its derived functor is $\mathrm{R} \Gamma_{Z}(F)=$ $\mathrm{RHom}\left(\mathbf{k}_{Z}, F\right)$. For an open subset U the functor $\Gamma_{Z}(U ; \cdot)$ is also left exact and we have $\mathrm{R} \Gamma_{Z}(U ; F) \simeq \mathrm{R} \Gamma\left(U ; \mathrm{R} \Gamma_{Z}(F)\right)$. We set

$$
H_{Z}^{i}(U ; F)=H^{i} \mathrm{R} \Gamma_{Z}(U ; F) .
$$

Let $U \subset X$ be open and let $F \in \mathrm{D}\left(\mathbf{k}_{X}\right)$. We can deduce from Lemma 1.15 the following long exact sequences (we use the notations
of the Lemma):

$$
\begin{aligned}
& \ldots \rightarrow H^{i}\left(U ; F_{W \backslash W^{\prime}}\right) \rightarrow H^{i}\left(U ; F_{W}\right) \rightarrow H^{i}\left(U ; F_{W^{\prime}}\right) \\
& \\
& \quad \rightarrow H^{i+1}\left(U ; F_{W \backslash W^{\prime}}\right) \rightarrow \ldots, \\
& \ldots \rightarrow H_{W^{\prime}}^{i}(U ; F) \rightarrow H_{W}^{i}(U ; F) \rightarrow H_{W \backslash W^{\prime}}^{i}(U ; F) \\
& \\
& \quad \rightarrow H_{W^{\prime}}^{i+1}(U ; F) \rightarrow \ldots
\end{aligned}
$$

We can also deduce from Lemma 1.16 the sequences

$$
\begin{aligned}
& \ldots \rightarrow H_{Z_{1} \cap Z_{2}}^{i}(U ; F) \rightarrow H_{Z_{1}}^{i}(U ; F) \oplus H_{Z_{2}}^{i}(U ; F) \\
& \quad \rightarrow H_{Z_{1} \cup Z_{2}}^{i}(U ; F) \rightarrow H_{Z_{1} \cap Z_{2}}^{i+1}(U ; F) \rightarrow \ldots, \\
& \ldots \rightarrow H^{i}\left(U_{1} \cup U_{2} ; F\right) \rightarrow H^{i}\left(U_{1} ; F\right) \oplus H^{i}\left(U_{2} ; F\right) \\
& \quad \rightarrow H^{i}\left(U_{1} \cap U_{2} ; F\right) \rightarrow H^{i+1}\left(U_{1} \cup U_{2} ; F\right) \rightarrow \ldots
\end{aligned}
$$

Using these sequences we can deduce from Theorem 1.27
Lemma 1.30. Let $U \subset X$ be an open subset such that \bar{U} is compact. Then $H^{*}\left(X ; \mathbf{k}_{U}\right) \simeq H_{c}^{*}(U ; \mathbf{k})$.

We denote by ω_{X} the dualizing complex on X. If X is a manifold, ω_{X} is actually the orientation sheaf shifted by the dimension, that is, $\omega_{X} \simeq o r_{X}\left[d_{X}\right]$. The duality functors are defined by

$$
\begin{equation*}
\mathrm{D}_{X}(\cdot)=\mathrm{R} \mathcal{H o m}\left(\cdot, \omega_{X}\right), \quad \mathrm{D}_{X}^{\prime}(\cdot)=\mathrm{R} \mathcal{H o m}\left(\cdot, \mathbf{k}_{X}\right) . \tag{1.6}
\end{equation*}
$$

An important result is the existence of a right adjoint for the derived proper direct image $\mathrm{R} f$! (Poincaré-Verdier duality). It is defined under fairly general hypothesis. At least, if $f: X \rightarrow Y$ is a map of manifolds, there exists $f^{!}: \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{Y}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right)$ right adjoint to $\mathrm{R} f_{!}$, which implies in particular

$$
\operatorname{Hom}\left(\mathrm{R} f_{!} F, G\right) \simeq \operatorname{Hom}\left(F, f^{!} G\right)
$$

for all $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right), G \in \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{Y}\right)$. When f is a locally closed embedding we have

$$
f^{!} G \simeq f^{-1}\left(\mathrm{R} \Gamma_{X}(G)\right)
$$

When f is a submersion, we have, setting $\omega_{X \mid Y}=\operatorname{RHom}\left(f^{-1}\left(\omega_{Y}\right), \omega_{X}\right)$

$$
f^{!} G \simeq f^{-1}(G) \otimes \omega_{X \mid Y} .
$$

In particular if f is a submersion with oriented fiber of dimension d, $f^{!} G \simeq f^{-1}(G)[d]$.

We recall some useful facts (see [3, §2, §3]).
Proposition 1.31. Let $f: X \rightarrow Y$ be a morphism of manifolds, F, G, $H \in \mathrm{D}\left(\mathbf{k}_{X}\right), F^{\prime}, G^{\prime} \in \mathrm{D}\left(\mathbf{k}_{Y}\right)$. Then we have
(a) $\operatorname{RHom}\left(\mathbf{k}_{U}, F\right) \simeq \mathrm{R} \Gamma(U ; F)$, for $U \subset X$ open,
(b) $\mathrm{R} \Gamma(U ; \operatorname{RHom}(F, G)) \simeq \operatorname{RHom}\left(\left.F\right|_{U},\left.G\right|_{U}\right)$, for $U \subset X$ open,
(c) $H^{i} F$ is the sheaf associated with $V \mapsto H^{i}(V ; F)$,
(d) $H^{i} \operatorname{RHom}(F, G)$ is the sheaf associated with $V \mapsto \operatorname{Hom}\left(\left.F\right|_{V},\left.G\right|_{V}[i]\right)$,
(e) $\operatorname{RHom}(F \stackrel{\mathrm{~L}}{\otimes} G, H) \simeq \operatorname{RHom}(F, \operatorname{RHom}(G, H))$,
(f) $\mathrm{R} f_{!}\left(F \stackrel{\mathrm{~L}}{\otimes} f^{-1} F^{\prime}\right) \simeq\left(\mathrm{R} f_{!} F\right) \stackrel{\mathrm{L}}{\otimes} F^{\prime}$, (projection formula),
(g) $f^{!} \operatorname{RHom}\left(F^{\prime}, G^{\prime}\right) \simeq \operatorname{RHom}\left(f^{-1} F^{\prime}, f^{!} G^{\prime}\right)$,
(h) $\mathrm{R} f_{*} \mathrm{RHom}(F, G) \simeq \operatorname{RHom}\left(\mathrm{R} f_{!} F, \mathrm{R} f_{*} G\right)$, if f is an embedding,

formula $f^{\prime-1} \mathrm{Rg}^{\prime}!\left(F^{\prime}\right) \simeq \mathrm{R} g_{!} f^{-1}\left(F^{\prime}\right)$,
The adjunction between $\stackrel{\mathrm{L}}{\otimes}$ and RHom together with $\mathbf{k}_{U} \otimes \mathbf{k}_{\bar{U}} \simeq \mathbf{k}_{U}$ give

$$
\operatorname{Hom}\left(\mathbf{k}_{U}, \mathrm{D}^{\prime}\left(\mathbf{k}_{\bar{U}}\right)\right) \simeq \operatorname{Hom}\left(\mathbf{k}_{U}, \mathbf{k}_{X}\right) \simeq H^{0}\left(U ; \mathbf{k}_{X}\right)
$$

and the canonical section $1 \in H^{0}\left(U ; \mathbf{k}_{X}\right)$ gives a morphism $\mathbf{k}_{U} \rightarrow$ $\mathrm{D}^{\prime}\left(\mathbf{k}_{\bar{U}}\right)$. Similarly we have a natural morphism $\mathbf{k}_{\bar{U}} \rightarrow \mathrm{D}^{\prime}\left(\mathbf{k}_{U}\right)$. In the following case they are isomorphisms.

Lemma 1.32. If the inclusion $U \subset X$ is locally homeomorphic to the inclusion $]-\infty, 0\left[\times \mathbb{R}^{n-1} \subset \mathbb{R}^{n}\right.$ (for example, if ∂U is smooth), then the above morphisms $\mathbf{k}_{U} \rightarrow \mathrm{D}^{\prime}\left(\mathbf{k}_{\bar{U}}\right)$ and $\mathbf{k}_{\bar{U}} \rightarrow \mathrm{D}^{\prime}\left(\mathbf{k}_{U}\right)$ are isomorphisms:

$$
\begin{equation*}
\mathbf{k}_{\bar{U}} \xrightarrow{\sim} \mathrm{D}^{\prime}\left(\mathbf{k}_{U}\right), \quad \mathbf{k}_{U} \xrightarrow{\sim} \mathrm{D}^{\prime}\left(\mathbf{k}_{\bar{U}}\right) . \tag{1.7}
\end{equation*}
$$

Proof. Let us prove the first isomorphism. It is enough to check that $\mathbf{k}_{\bar{U}} \rightarrow \mathrm{D}^{\prime}\left(\mathbf{k}_{U}\right)$ induces an isomorphism $\mathbf{k} \xrightarrow{\sim}\left(\mathrm{D}^{\prime}\left(\mathbf{k}_{U}\right)\right)_{x}$ for each $x \in X$. Since $\mathrm{D}^{\prime}\left(\mathbf{k}_{U}\right)=\mathrm{RHom}\left(\mathbf{k}_{U}, \mathbf{k}_{X}\right)$, Proposition 1.31 (b-c) gives

$$
H^{i}\left(\mathrm{D}^{\prime}\left(\mathbf{k}_{U}\right)\right)_{x} \simeq \underset{x \in V}{\lim } \operatorname{Hom}\left(\left.\mathbf{k}_{U}\right|_{V},\left.\mathbf{k}_{X}\right|_{V}[i]\right) .
$$

By (a) we have $\operatorname{Hom}\left(\left.\mathbf{k}_{U}\right|_{V},\left.\mathbf{k}_{X}\right|_{V}[i]\right) \simeq H^{i}\left(U \cap V ; \mathbf{k}_{X}\right)$. By Theorem 1.27 this is the cohomology of $U \cap V$ which can be chosen contractible in our inductive limit.

Example 1.33. We have $R \Gamma_{\{0\}}\left(\mathbf{k}_{\mathbb{R}^{n}}\right) \simeq \mathbf{k}_{\{0\}}[-n]$. Indeed the sheaf $R \Gamma_{\{0\}} \mathbf{k}_{\mathbb{R}^{n}}$ has support $\{0\}$ and its stalk at 0 coincides with its global sections. We have the excision exact sequence

$$
H_{\{0\}}^{i}\left(\mathbb{R}^{n} ; \mathbf{k}_{\mathbb{R}^{n}}\right) \rightarrow H^{i}\left(\mathbb{R}^{n} ; \mathbf{k}_{\mathbb{R}^{n}}\right) \rightarrow H_{\mathbb{R}^{n} \backslash\{0\}}^{i}\left(\mathbb{R}^{n} ; \mathbf{k}_{\mathbb{R}^{n}}\right)
$$

By Proposition 1.31 (a) $H_{\mathbb{R}^{n} \backslash\{0\}}^{i}\left(\mathbb{R}^{n} ; \mathbf{k}_{\mathbb{R}^{n}}\right) \simeq H^{i}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbf{k}_{\mathbb{R}^{n}}\right)$ and this is the cohomology of the sphere. The result follows.

Example 1.34. The previous example generalizes as follows. Let X be a manifold and Z a submanifold of codimension d. Then $\mathrm{R} \Gamma_{Z}\left(\mathbf{k}_{X}\right) \simeq$ $o r_{Z \mid X}[-d]$ where $o r_{Z \mid X}$ is the relative orientation sheaf.

Example 1.35. In \mathbb{R}^{2} we define $Z=\{x \geq 0 ; y \geq 0\}$ and $U=\{x<0$; $y<0\}$. Then $\operatorname{RHom}\left(\mathbf{k}_{Z}, \mathbf{k}_{U}\right) \simeq \mathbf{k}[-2]$. Indeed, by Lemma 1.32 we have

$$
\begin{aligned}
\operatorname{RHom}\left(\mathbf{k}_{Z}, \mathbf{k}_{U}\right) & \simeq \operatorname{RHom}\left(\mathbf{k}_{Z}, \operatorname{RHom}\left(\mathbf{k}_{\bar{U}}, \mathbf{k}_{\mathbb{R}^{2}}\right)\right) \\
& \simeq \operatorname{RHom}\left(\mathbf{k}_{Z} \otimes \mathbf{k}_{\bar{U}}, \mathbf{k}_{\mathbb{R}^{2}}\right) \\
& \simeq \operatorname{RHom}\left(\mathbf{k}_{Z \cap \bar{U}}, \mathbf{k}_{\mathbb{R}^{2}}\right) \\
& \simeq \operatorname{RHom}\left(\mathbf{k}_{\{0\}}, \mathbf{k}_{\mathbb{R}^{2}}\right)
\end{aligned}
$$

and the result follows from Example 1.33 .
Example 1.36. By the previous example $\operatorname{Hom}\left(\mathbf{k}_{Z}, \mathbf{k}_{U}[2]\right) \simeq \mathbf{k}$. Let $u: \mathbf{k}_{Z} \rightarrow \mathbf{k}_{U}[2]$ be the image of $1 \in \mathbf{k}$. Let $F \in \mathrm{D}\left(\mathbf{k}_{\mathbb{R}^{2}}\right)$ be given by the dt $F \rightarrow \mathbf{k}_{Z} \rightarrow \mathbf{k}_{U}[2] \xrightarrow{+1}$. Then F is isomorphic to the complex $\mathbf{k}_{\mathbb{R}^{2}} \xrightarrow{d} \mathbf{k}_{Z_{1}} \oplus \mathbf{k}_{Z_{2}}$ where $\mathbf{k}_{\mathbb{R}^{2}}$ is in degree $0, Z_{1}=\{x \geq 0\}, Z_{2}=\{y \geq 0\}$ and d is the sum of the natural morphisms $\mathbf{k}_{\mathbb{R}^{2}} \rightarrow \mathbf{k}_{Z_{i}}$ induced by the inclusions of closed subsets $Z_{i} \subset \mathbb{R}^{2}$.

2. Derived categories

2.1. Categories of complexes.

Definition 2.1. Let \mathcal{C} be an additive category. A complex $\left(X^{\cdot}, d_{X}\right)$ in \mathcal{C} is a sequence of composable morphisms in \mathcal{C}

$$
\cdots \rightarrow X^{i} \xrightarrow{d_{X}^{i}} X^{i+1} \rightarrow \cdots
$$

such that $d^{i+1} \circ d^{i}=0$, for all $i \in \mathbb{Z}$ (we forget the subscripts when there is no ambiguity). The sequence of morphisms d_{X}^{i} is called the differential.

A morphism f from a complex $\left(X^{*}, d_{X}\right)$ to a complex $\left(Y^{*}, d_{Y}\right)$ is a sequence of morphisms $f^{i}: X^{i} \rightarrow Y^{i}, i \in \mathbb{Z}$, commuting with the differentials.

We denote by $\mathrm{C}(\mathcal{C})$ the category of complexes in \mathcal{C}. A complex is said bounded from below (resp. above) if $X^{i} \simeq 0$ for $i \ll 0($ resp. $i \gg 0)$. It is bounded if it bounded from below and from above. We let $\mathrm{C}^{+}(\mathcal{C})$, $\mathrm{C}^{-}(\mathcal{C}), \mathrm{C}^{b}(\mathcal{C})$ be the corresponding categories.

Definition 2.2. Let \mathcal{C} be an abelian category and let $X=\left(X^{\prime}, d_{X}\right) \in$ $\mathrm{C}(\mathcal{C})$. For $i \in \mathbb{Z}$ we define

$$
\begin{aligned}
& Z^{i}(X)=\operatorname{ker} d_{X}^{i}, \quad B^{i}(X)=\operatorname{im} d_{X}^{i-1} \\
& H^{i}(X)=Z^{i}(X) / B^{i}(X)=\operatorname{coker}\left(B^{i}(X) \rightarrow Z^{i}(X)\right)
\end{aligned}
$$

and we call $H^{i}(X)$ the $i^{\text {th }}$ cohomology of X. In the case of the category of groups $Z^{i}(X)$ (resp. $B^{i}(X)$) is called the $i^{\text {th }}$ group of cocycles (resp. boundaries).

A morphism of complexes $f: X \rightarrow Y$ induces morphisms $Z^{i}(f)$, $B^{i}(f), H^{i}(f)$ and Z^{i}, B^{i}, H^{i} are functors from $\mathrm{C}(\mathcal{C})$ to \mathcal{C}. We say that f is a quasi-isomorphism if the morphisms $H^{i}(f): H^{i}(X) \rightarrow H^{i}(Y)$ are isomorphisms, for all $i \in \mathbb{Z}$.

If \mathcal{C} is abelian, then $\mathrm{C}(\mathcal{C})$ is also abelian. Moreover for a morphism $f: X \rightarrow Y$ in $\mathrm{C}(\mathcal{C})$ we have $(\operatorname{ker} f)^{i}=\operatorname{ker}\left(f^{i}\right)$ and $(\text { coker } f)^{i}=$ $\operatorname{coker}\left(f^{i}\right)$.

Proposition 2.3. Let \mathcal{C} be an abelian category and let $0 \rightarrow X \xrightarrow{f} Y \xrightarrow{g}$ $Z \rightarrow 0$ be a short exact sequence in $\mathrm{C}(\mathcal{C})$. Then there exists a canonical long exact sequence in \mathcal{C}

$$
\begin{aligned}
& \cdots \rightarrow H^{n}(X) \xrightarrow{H^{n}(f)} H^{n}(Y) \xrightarrow{H^{n}(g)} H^{n}(Z) \xrightarrow{\delta^{n}} H^{n+1}(X) \\
& \xrightarrow{H^{n+1}(f)} H^{n+1}(Y) \xrightarrow{H^{n+1}(g)} H^{n+1}(Z) \rightarrow \cdots .
\end{aligned}
$$

Definition 2.4. Let \mathcal{C} be an abelian category and let $I \in \mathrm{Ob}(\mathcal{C})$. We say that I is injective if the functor $\operatorname{Hom}(\cdot, I)$ is exact, that is, if for any short exact sequence $0 \rightarrow A \rightarrow B$, the sequence $\operatorname{Hom}(A, I) \rightarrow$ $\operatorname{Hom}(B, I) \rightarrow 0$ is exact. We say that \mathcal{C} has enough injectives if for any $M \in \mathrm{Ob}(\mathcal{C})$, there exist an injective object I and an exact sequence $0 \rightarrow M \rightarrow I$.

Proposition 2.5. Let \mathcal{C} be an abelian category. We assume that \mathcal{C} has enough projectives. Then any $X \in \mathrm{C}^{+}(\mathcal{C})$ has an injective (right) resolution, that is, a morphism $u: X \rightarrow I$ in $\mathrm{C}^{+}(\mathcal{C})$ such that u is a quasi-isomorphism and I^{k} is injective for each $k \in \mathbb{Z}$.

This proposition holds in $C(\mathcal{C})$ but the right notion of injective resolution is more complicated. The next proposition says that a projective resolution is unique up to homotopy in the following sense.

Definition 2.6. Let \mathcal{C} be an additive category and let $P=\left(P^{\prime}, d_{P}\right)$, $Q=\left(Q, d_{Q}\right) \in \mathrm{C}(\mathcal{C})$. We say that two morphisms $f, g: P \rightarrow Q$ in $\mathrm{C}(\mathcal{C})$
are homotopic if there exists a family of morphisms $s^{i}: P^{i} \rightarrow Q^{i-1}$, $i \in \mathbb{Z}$, such that

$$
f^{n}-g^{n}=d_{Q}^{n-1} \circ s^{n}+s^{n+1} \circ d_{P}^{n},
$$

for all $n \in \mathbb{Z}$.
The homotopy relation is compatible with the additive structure of $\operatorname{Hom}(P, Q)$ and with the composition in $\mathrm{C}(\mathcal{C})$. It follows that we can define a category of complexes up to homotopy as follows.
Definition 2.7. Let \mathcal{C} be an additive category. We define a category $\mathrm{K}(\mathcal{C})$ by $\mathrm{Ob}(\mathrm{K}(\mathcal{C}))=\mathrm{Ob}(\mathrm{C}(\mathcal{C}))$ and

$$
\operatorname{Hom}_{\mathbf{K}(\mathcal{C})}(P, Q)=\operatorname{Hom}_{\mathcal{C}(\mathcal{C})}(P, Q) / \sim_{h},
$$

where \sim_{h} is the homotopy relation on $\operatorname{Hom}_{\mathcal{C}(\mathcal{C})}(P, Q)$. We have an obvious functor $\mathrm{K}(\mathcal{C}) \rightarrow \mathrm{C}(\mathcal{C})$ which is the identity on objects and the quotient map on the morphisms.

The category $\mathrm{K}(\mathcal{C})$ is additive. It is no longer abelian but it has a triangulated structure.

Proposition 2.8. Let \mathcal{C} be an abelian category, let $X, Y \in \mathrm{C}^{+}(\mathcal{C})$ and let $v: Y \rightarrow J$ be an injective resolution in $\mathrm{C}^{+}(\mathcal{C})$. Let $f: X \rightarrow Y$ be a morphism and $u: X \rightarrow I$ a quasi-isomorphism. Then there exists a morphism $f^{\prime}: I \rightarrow J$ such that $v \circ f=f^{\prime} \circ u$. Moreover, if $f^{\prime \prime}: I \rightarrow J$ is another such morphism, then f^{\prime} and $f^{\prime \prime}$ are homotopic. In particular two injective resolutions of X are canonically isomorphic in $\mathrm{K}(\mathcal{C})$.
2.2. Definition of derived categories. Here we only give a brief account on the subject and refer to the first chapter of [3] or to [?] for details and proofs.

Definition 2.9. Let \mathcal{C} be an abelian category and let $u: X \rightarrow Y$ be a morphism in $\mathrm{C}(\mathcal{C})$ or in $\mathrm{K}(\mathcal{C})$. We say that u is a quasi-isomorphism (qis for short) if the morphisms $H^{i}(u): H^{i}(X) \rightarrow H^{i}(Y)$ are isomorphisms, for all $i \in \mathbb{Z}$.

The derived category of \mathcal{C}, denoted $\mathrm{D}(\mathcal{C})$, is obtained from $\mathrm{C}(\mathcal{C})$ by inverting the qis. This process is called localization.
Definition 2.10. Let \mathcal{A} be a category and \mathcal{S} a family of morphisms in \mathcal{A}. A localization of \mathcal{A} by \mathcal{S} is a category $\mathcal{A}_{\mathcal{S}}$ (a priori in a bigger universe) and a functor $Q: \mathcal{A} \rightarrow \mathcal{A}_{\mathcal{S}}$ such that
(i) for all $s \in \mathcal{S}, Q(s)$ is an isomorphism,
(ii) for any category \mathcal{B} and any functor $F: \mathcal{A} \rightarrow \mathcal{B}$ such that $F(s)$ is an isomorphism for all $s \in \mathcal{S}$, there exists a (unique) functor $F_{\mathcal{S}}: \mathcal{A}_{\mathcal{S}} \rightarrow \mathcal{B}$ such that $F \simeq F_{\mathcal{S}} \circ Q$,

It is possible to construct $\mathcal{A}_{\mathcal{S}}$ as a category with the same objects as \mathcal{A} and with morphisms defined as chains $\left(s_{1}, u_{1}, s_{2}, u_{2}, \ldots, s_{n}, u_{n}\right)$ with $s_{i} \in \mathcal{S}$ and u_{i} any morphism in \mathcal{A} modulo some equivalence relation. Such a chain is meant to represent $u_{n} \circ s_{n}^{-1} \circ u_{n-1} \circ \cdots \circ s_{1}^{-1}$. However we will only consider a special case where the localization is obtained by a calculus of fractions.

Definition 2.11. A family \mathcal{S} of morphisms in \mathcal{A} is a left multiplicative system if
(i) any isomorphism belongs to \mathcal{S},
(ii) if $f, g \in \mathcal{S}$ and $g \circ f$ is defined, then $g \circ f \in \mathcal{S}$,
(iii) for given morphisms $f, s, s \in \mathcal{S}$, as in the following diagram, there exist $g, t, t \in \mathcal{S}$, making the diagram commutative

(iv) for two given morphisms $f, g: X \rightarrow Y$ in \mathcal{A}, if there exists $s \in \mathcal{S}$ such that $s \circ f=s \circ g$, then there exists $t \in \mathcal{S}$ such that $f \circ t=g \circ t$:

$$
W \xrightarrow{t} X \xrightarrow{f, g} Y \xrightarrow{s} Z .
$$

Proposition 2.12. Let \mathcal{A} be a category and \mathcal{S} a left multiplicative system. Then $\mathcal{A}_{\mathcal{S}}$ can be described as follows. The set of objects is $\operatorname{Ob}\left(\mathcal{A}_{\mathcal{S}}\right)=\operatorname{Ob}(\mathcal{A})$. For $X, Y \in \operatorname{Ob}(\mathcal{A})$, we have $\operatorname{Hom}_{\mathcal{A}_{\mathcal{S}}}(X, Y)=$ $\{(W, s, u) ; s: W \rightarrow X$ is in \mathcal{S} and $u: W \rightarrow Y$ is in $\mathcal{A}\} / \sim$, where the equivalence relation \sim is given by $(W, s, u) \sim\left(W^{\prime}, s^{\prime}, u^{\prime}\right)$ if there exists $\left(W^{\prime \prime}, s^{\prime \prime}, u^{\prime \prime}\right), s^{\prime \prime} \in \mathcal{S}$, such that we have a commutative diagram

The composition " $u s^{\prime} s^{\prime-1} u s^{-1}$ " is visualized by the diagram

where $t, v, t \in \mathcal{S}$, are given by (iii) in Definition 2.11.
Let us go back to our abelian category \mathcal{C}.
Proposition 2.13. Let Qis be the family of qis in $\mathrm{K}(\mathcal{C})$. Then Qis is a left (and right) multiplicative system.

Definition 2.14. Let \mathcal{C} be an abelian category. The derived category of \mathcal{C} is the localization $\mathrm{D}(\mathcal{C})=(\mathrm{K}(\mathcal{C}))_{Q i s}$. We denote by $Q_{\mathcal{C}}: \mathrm{K}(\mathcal{C}) \rightarrow$ $\mathrm{D}(\mathcal{C})$ the localization functor (or its composition with $\mathrm{C}(\mathcal{C}) \rightarrow \mathrm{K}(\mathcal{C})$). Starting with $\mathrm{K}^{*}(\mathcal{C})$ where $*=+,-$ or b, we define in the same way $\mathrm{D}^{*}(\mathcal{C})$.

The categories $\mathrm{K}(\mathcal{C})$ and $\mathrm{D}(\mathcal{C})$ are additive. They are not abelian in general.

By definition the cohomology functors $H^{i}: \mathrm{K}(\mathcal{C}) \rightarrow \mathcal{C}, i \in \mathbb{Z}$, factorize through the localization functor. We still denote by $H^{i}: \mathrm{D}(\mathcal{C}) \rightarrow \mathcal{C}$ the induced functors.

Lemma 2.15. Let $\mathcal{C}, \mathcal{C}^{\prime}$ be abelian categories. Let $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ be an exact functor. Then $C(F)$ sends qis to qis. In particular $Q_{\mathcal{C}^{\prime}} \circ$ $\mathrm{K}(F): \mathrm{K}(\mathcal{C}) \rightarrow \mathrm{D}\left(\mathcal{C}^{\prime}\right)$ sends qis to isomorphisms and factorizes in a unique way through a functor $\mathrm{D}(\mathcal{C}) \rightarrow \mathrm{D}\left(\mathcal{C}^{\prime}\right)$ that we still denote by F :

Remark 2.16. We have a natural embedding of \mathcal{C} in $\mathrm{C}(\mathcal{C})$ which sends $X \in \mathcal{C}$ to the complex $\left(X^{\cdot}, d_{X}\right)$ with $X^{0}=X$ and $X^{i}=0$ for $i \neq 0$. This induces by composition other functors $\mathcal{C} \rightarrow \mathrm{K}(\mathcal{C})$ and $\mathcal{C} \rightarrow \mathrm{D}(\mathcal{C})$. We can check that all these functors are fully faithful embeddings of \mathcal{C} in $\mathrm{C}(\mathcal{C}), \mathrm{K}(\mathcal{C})$ or $\mathrm{D}(\mathcal{C})$.

Proposition 2.8 translate as follows.
Proposition 2.17. Let \mathcal{C} be an abelian category. We assume that \mathcal{C} has enough injectives and we let \mathcal{I} be its full subcategory of injective objects. We denote by $\left.Q\right|_{\mathcal{I}}: \mathrm{K}^{+}(\mathcal{I}) \rightarrow \mathrm{D}^{+}(\mathcal{C})$ the functor induced by the quotient functor. Then $\left.Q\right|_{\mathcal{I}}$ is an equivalence of categories.

Definition 2.18 (Derived functor). Let $\mathcal{C}, \mathcal{C}^{\prime}$ be abelian categories. We assume that \mathcal{C} has enough injectives. Let $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}\left(\right.$ or $F: \mathrm{C}^{+}(\mathcal{C}) \rightarrow$ $\mathrm{C}^{+}\left(\mathcal{C}^{\prime}\right)$) be a left exact functor. Let $\mathrm{K}(F): \mathrm{K}^{+}(\mathcal{I}) \rightarrow \mathrm{K}^{+}\left(\mathcal{C}^{\prime}\right)$ be the functor induced by F. We define $R F: \mathrm{D}^{+}(\mathcal{C}) \rightarrow \mathrm{D}^{+}\left(\mathcal{C}^{\prime}\right)$ by $R F=$
$Q_{\mathcal{C}^{\prime}} \circ \mathrm{K}(F) \circ$ res, where res is an inverse to the equivalence $\left.Q\right|_{\mathcal{I}}$ of Proposition 2.17.

If F is exact then $R F \simeq F$ (with the notation of Lemma 2.15). For a left exact functor $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ and $X \in \mathcal{C}$ we have $H^{0} R F(X) \simeq F(X)$ (using the embedding of Remark 2.16).

Truncation functors. Let \mathcal{C} be an abelian category. For a given $n \in \mathbb{Z}$ we define $\tau_{\leq n}, \tau_{\geq n}: \mathrm{C}(\mathcal{C}) \rightarrow \mathrm{C}(\mathcal{C})$ by

$$
\begin{aligned}
& \tau_{\leq n}(X)=\cdots \rightarrow X^{n-2} \rightarrow X^{n-1} \rightarrow \operatorname{ker}\left(d_{X}^{n}\right) \rightarrow 0 \rightarrow \cdots \\
& \tau_{\geq n}(X)=\cdots \rightarrow 0 \rightarrow \operatorname{coker}\left(d_{X}^{n-1}\right) \rightarrow X^{n+1} \rightarrow X^{n+2} \rightarrow \cdots
\end{aligned}
$$

We have natural morphisms in $\mathrm{C}(\mathcal{C})$, for $n \leq m$,

$$
\begin{aligned}
\tau_{\leq n}(X) \rightarrow X, & X \rightarrow \tau_{\geq n}(X) \\
\tau_{\leq n}(X) \rightarrow \tau_{\leq m}(X), & \tau_{\geq n}(X) \rightarrow \tau_{\geq m}(X)
\end{aligned}
$$

We have $H^{i}\left(\tau_{\leq n}(X)\right) \simeq H^{i}(X)$ for $i \leq n$ and $H^{i}\left(\tau_{\leq n}(X)\right) \simeq 0$ for $i>0$. We have a similar result for $\tau_{\geq n}(X)$ and the above morphisms induce the tautological morphisms on the cohomology (that is, the identity morphism of H^{i} if both groups are non-zero, or the zero morphism).

In particular the functors $\tau_{\leq n}, \tau_{\geq n}$ send qis to qis and they induce functors, denoted in the same way, on $\mathrm{D}(\mathcal{C})$, together with the same morphisms of functors. We see from the definition, for any $X \in \mathrm{D}(\mathcal{C})$ and any $i \in \mathbb{Z}$:

$$
\begin{equation*}
\tau_{\leq i} \tau_{\geq i}(X) \simeq \tau_{\geq i} \tau_{\leq i}(X) \simeq H^{i}(X)[-i] . \tag{2.1}
\end{equation*}
$$

Lemma 2.19. Let \mathcal{C} be an abelian category and let $X \in \mathrm{D}(\mathcal{C})$ be an objet concentrated in one degree i_{0}, that is, $H^{i}(X) \simeq 0$ if $i \neq i_{0}$. Then $X \simeq H^{i_{0}}(X)\left[-i_{0}\right]$.

Proof. By the hypothesis and by the description of the cohomology of $\tau_{\leq n}(X), \tau_{\geq n}(X)$, the morphisms $\tau_{\leq i_{0}}(X) \rightarrow X$ and $\tau_{\leq i_{0}}(X) \rightarrow$ $\tau_{\geq i_{0}}\left(\tau_{\leq i_{0}}(X)\right)$ are isomorphisms in $\mathrm{D}(\overline{\mathcal{C}})$. Hence $X \simeq \tau_{\geq i_{0}}\left(\tau_{\leq i_{0}}(X)\right)$ and we conclude with (2.1).
2.3. Triangulated structure. We recall that a triangulated category \mathcal{T} is an additive category endowed with an auto-equivalence $X \mapsto X[1]$ and a family of distinguish triangles (dt) $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ such that
(TR1) every morphism can be extended to distinguished triangle, the collection of distinguished triangles is stable under isomorphism and, for any $X \in \mathcal{T}$ the triangle $X \xrightarrow{\text { id }} X \xrightarrow{0} 0 \xrightarrow{0} X[1]$ is distinguished,
(TR2) $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is a dt if and only if $Y \xrightarrow{g} Z \xrightarrow{h} X[1] \xrightarrow{-f[1]}$ $Y[1]$ is a dt,
(TR3) for two dt $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ and $X^{\prime} \xrightarrow{f^{\prime}} Y^{\prime} \xrightarrow{g^{\prime}} Z^{\prime} \xrightarrow{h^{\prime}} X^{\prime}[1]$, any commutative square $f^{\prime} \circ u=v \circ f$ (with $u: X \rightarrow X^{\prime}, v: Y \rightarrow$ Y^{\prime}) can be extended to a morphism of triangles (that is, there exists $w: Z \rightarrow Z^{\prime}$ making two other commutative squares),
(TR4) octahedral axiom (it is the distinguished triangle version of the isomorphism $(C / A) /(B / A) \simeq C / B$ for two inclusions of k-modules $A \hookrightarrow B \hookrightarrow C)$.
If \mathcal{C} is an abelian category, then $\mathrm{D}(\mathcal{C})$ is triangulated. If $0 \rightarrow X \xrightarrow{f}$ $Y \xrightarrow{g} Z \rightarrow 0$ is a short exact sequence in $\mathrm{C}(\mathcal{C})$, then there exists a morphism $Z \xrightarrow{h} X[1]$ in $\mathrm{D}(\mathcal{C})$ such that $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is a dt. If $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is a dt in $\mathrm{D}(\mathcal{C})$, then we have a long exact sequence in \mathcal{C} :

$$
\begin{aligned}
\cdots \rightarrow H^{n}(X) \xrightarrow{H^{n}(f)} H^{n}(Y) \xrightarrow{H^{n}(g)} H^{n}(Z) \xrightarrow{H^{n}(h)} H^{n+1}(X) \\
\xrightarrow{H^{n+1}(f)} H^{n+1}(Y) \xrightarrow{H^{n+1}(g)} H^{n+1}(Z) \rightarrow \cdots .
\end{aligned}
$$

The derived functor $R F$ of Definition 2.18 is triangulated (i.e. it sends a dt to a dt).

References

[1] M. Kashiwara and P. Schapira, Micro-support des faisceaux: applications aux modules différentiels, C. R. Acad. Sci. Paris série I Math 295 8, 487-490 (1982).
[2] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Astérisque 128 Soc. Math. France (1985).
[3] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren der Math. Wiss. 292 Springer-Verlag (1990).
[4] M. Robalo and P. Schapira, A lemma for microlocal sheaf theory in the ∞ categorical setting, Publ. RIMS, Kyoto Univ. Vol. 54 379-391 (2018).
[5] O. Schnürer and W. Soergel, Proper base change for separated locally proper maps, Rendiconti del Seminario matematico della Università di Padova 135 (2016).

