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1. Sheaves

In this section k is a given ring.

1.1. Definition. A presheaf P (of k-modules) on a topological space
X is the data of k-modules P (U) for all open subsets U of X together
with linear maps rVU : P (U) −→ P (V ) for all inclusions V ⊂ U such that
rWV ◦ rVU = rWU for W ⊂ V ⊂ U . For a section s ∈ P (U) we usually
set s|V = rVU (s). A sheaf F is a presheaf such that, for any covering
U =

⋃
i∈I Ui and sections si ∈ F (Ui) satisfying si|Uij

= si|Uij
, there

exists a unique s ∈ F (U) such that si = s|Ui
.

We often set Γ(U ;F ) = F (U).
The stalk of a presheaf at x ∈ X is Px = lim−→U∈X P (U), where U runs

over the open neighborhoods of x.
A morphism of presheaves f : P −→ P ′ is the data of groups mor-

phisms f(U) : P (U) −→ P ′(U) which commute with the restriction
maps, that is, r′V,U ◦ f(U) = f(V ) ◦ rV,U , for all V ⊂ U ⊂ X. A
morphism of sheaves is a morphism of the underlying presheaves.

We denote by Mod(kX) the category of sheaves of k-modules on X.

Examples 1.1. (i) The constant sheaf kX on X is defined by kX(U) =
{f : U −→ k; f is locally constant}. If N is a k-module, we define NX ,
the constant sheaf with stalks N , in the same way.

(ii) If Z ⊂ X is a closed subset, we define kX,Z (or kZ if X is under-
stand) by kX,Z(U) = {f : U ∩ Z −→ k; f is locally constant}.

A morphism u in Mod(kX) is an isomorphism if and only if ux is an
isomorphism for all x ∈ X.

Lemma 1.2 (Associated sheaf of a presheaf). Let X be a topological
space and let P ∈ P(X). There exist a sheaf P a and a morphism of
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presheaves u : P −→ P a such that ux is an isomorphism, for each x ∈ X.
Moreover the pair (P a, u) is unique up to isomorphism.

Any morphism v in Mod(kX) has a kernel, given by U 7→ ker v(U),
and a cokernel, given by (U 7→ coker v(U))a. The category Mod(kX) is
abelian (which means that it is additive, kernel and cokernel exist and
are well-behaved in the sense “ker(coker(v)) ≃ coker(ker(v))”). We can

also check: a sequence F
u−→ G

v−→ H in Mod(kX) is exact if and only if

the sequences of stalks Fx
ux−→ Gx

vx−→ Hx are exact for all x ∈ X.

1.2. Operations.

Proposition 1.3. Let Fi, i ∈ I, be a family of sheaves in Mod(kX).
Then the product

∏
i∈I Fi and the sum

⊕
i∈I Fi exist in Mod(kX). The

product is the sheaf defined by Γ(U ;
∏

i∈I Fi) =
∏

i∈I Γ(U ;Fi) for any
open subset U . The sum is the sheaf associated with the presheaf U 7→⊕

i∈I Γ(U ;Fi). For any x ∈ X we have a canonical isomorphism

(1.1) (
⊕
i∈I

Fi)x ≃
⊕
i∈I

(Fi)x.

Definition 1.4. For F,G ∈ Mod(kX) we define a sheaf Hom(F,G) ∈
Mod(kX), the internal hom sheaf, by

Γ(U ;Hom(F,G)) = HomMod(kU )(F |U , G|U).
We define the tensor product F ⊗kX

G as the sheaf associated with the
presheaf U 7→ F (U)⊗k G(U).

We can prove

(1.2) (F ⊗kX
G)x ≃ Fx ⊗k Gx, for all x ∈ X.

Lemma 1.5. The functor Hom(·, ·) is left exact in both arguments.
The functor · ⊗kX

· is right exact in both arguments, and exact if k is
a field.

Let f : X −→ Y be a continuous map between topological spaces.

Definition 1.6. For F ∈ Mod(kX) we define a sheaf f∗F ∈ Mod(kY )
by (f∗F )(V ) = F (f−1(V )) for any open subset V ⊂ Y , with the re-
striction maps naturally given by those of F (it is clear that f∗F is a
presheaf and it is easy to check that it is actually a sheaf).

If u : F −→ G is a morphism in Mod(kX), we define f∗u : f∗F −→
f∗G by (f∗u)(V ) = u(f−1(V )). We obtain a functor f∗ : Mod(kX) −→
Mod(kY ).

Lemma 1.7. For any continuous map f : X −→ Y , the functor f∗ is
left exact.
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Definition 1.8. For G ∈ Mod(kY ) we define a presheaf f †G on X
by (f †G)(U) = lim−→V⊃f(U)

G(V ), where V runs over the open neighbor-

hoods of f(U) in Y . The restriction maps are naturally induced by
those of G. We set f−1G = (f †G)a.

A morphism u : F −→ G induces morphisms on the inductive limits,
(f †u)(U) : (f †F )(U) −→ (f †G)(U), for all U ∈ Op(X), which are com-
patible and define f †u : f †F −→ f †G. We set f−1u = (f †u)a. We thus
obtain a functor f−1 : Mod(kY ) −→ Mod(kX).

Lemma 1.9. The functor f−1 is left adjoint to f∗. In particular there
exist natural isomorphisms Hom(f−1G,F ) ≃ Hom(G, f∗F ) for all F ∈
Mod(kX), G ∈ Mod(kY ).

When f : X −→ Y is an embedding we often write

G|X := f−1G.

If f is the inclusion of an open set, we have (G|X)(U) = G(U), for all
U ∈ Op(X).

Example 1.10. Let X be a Hausdorff topological space and Z ⊂ X a
compact subset. Then, for any F ∈ Mod(kX) and V ∈ Op(Z), we have
(F |Z)(V ) ≃ lim−→U⊃V

F (U), where U runs over the open neighborhoods

of V in X.

Lemma 1.11. Let f : X −→ Y be a continuous map and let x ∈ Y . For
any F ∈ Mod(kY ) we have a natural isomorphism (f−1F )x ≃ Ff(x).

Since the exactness of a sequence of sheaves can be checked in the
stalks we deduce:

Lemma 1.12. For any continuous map f : X −→ Y , the functor f−1 is
exact.

1.3. Locally closed subsets. A subsetW ofX is locally closed subset
if we can write W = U ∩ Z with U open and Z closed.

Lemma 1.13. Let W ⊂ X be a locally closed subset and F ∈ Mod(kX).
Then there exists a unique sheaf FW ∈ Mod(kX) such that FW |W ≃
F |W and FW |X\W ≃ 0. Moreover we have FW ≃ F ⊗ (kX)W .

We set for short kX,W = (kX)W and even kW = kX,W when it is
clear that we consider sheaves on X.

Example 1.14. If W is closed in X, the sheaf kW is already defined
in Example 1.1. In general we have kW (U) ≃ {f : U ∩ W −→ k; f is
locally constant and {x; f(x) ̸= 0} is closed in U}.
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Lemma 1.15 (Excision). Let W ⊂ X be a locally closed subset and
let W ′ ⊂ W be a closed subset of W . Then W ′ and W \W ′ are locally
closed in X and we have an exact sequence:

0 −→ kW\W ′ −→ kW −→ kW ′ −→ 0.

Lemma 1.16 (Mayer-Vietoris). Let Z1, Z2 ⊂ X be closed subsets and
U1, U2 ⊂ X open subsets. We have exact sequences

0 −→ kZ1∪Z2 −→ kZ1 ⊕ kZ2 −→ kZ1∩Z2 −→ 0,

0 −→ kU1∩U2 −→ kU1 ⊕ kU2 −→ kU1∪U2 −→ 0.

1.4. Proper direct image. A topological space X is locally compact
if, for any x ∈ X and any neighborhood U of x, there exists a compact
neighborhood of x contained in U . Now we assume X, Y are Hausdorff
and locally compact. Then a map f : X −→ Y is proper if the inverse
image of any compact subset of Y is compact.

Definition 1.17. Let f : X −→ Y be a continuous map of Hausdorff
and locally compact spaces. For F ∈ Mod(kX) we define a subsheaf
f!F ∈ Mod(kY ) of f∗F by

(f!F )(V ) = {s ∈ (f−1(V )); f |supp s : supp(s) −→ V is proper}

for any open subset V ⊂ Y . If u : F −→ G is a morphism in Mod(kX),
the morphism f∗u : f∗F −→ f∗G sends f!F to f!G. We obtain a functor
f! : Mod(kX) −→ Mod(kY ).

If the map f itself is proper, then we have f! ∼−→ f∗.

Lemma 1.18. The functor f! is left exact.

For F ∈ Mod(kX) and U ∈ Op(X) we set

Γc(U ;F ) = {s ∈ F (V ); supp(s) is compact.}

We have Γc(U ;F ) ≃ a!(F |U), where a is the projection U −→ {pt}.

Proposition 1.19. Let f : X −→ Y be as in Definition 1.17. For any
F ∈ Mod(kX) and y ∈ Y we have

(f!F )y ≃ Γc(f
−1(y);F |f−1(y)).

Example 1.20. In the situation of Lemma 1.13 let j : Z −→ X be the
inclusion. Then kX,Z ≃ j!kZ and FZ ≃ j!j

−1F .



SHORT LECTURE ON SHEAVES AND DERIVED CATEGORIES 5

1.5. Enough injectives in Mod(kX). We first remark the following
general result.

Lemma 1.21. Let f : X −→ Y be a continuous map and assume that
I ∈ Mod(kX) is injective. Then f∗I ∈ Mod(kY ) is injective.

Proof. The injectivity of f∗(I) means that the map

HomC′(G, f∗I) −→ HomC′(F, f∗I)

is surjective, for all monomorphism 0 −→ F −→ G in Mod(kY ). Since
f−1 is exact, f−1F −→ f−1G is also a monomorphism and the injectivity
of I gives the surjectivity of

HomC(f
−1G, I) −→ HomC(f

−1F, I).

The result follows since (f−1, f∗) is an adjoint pair. □

Let X be a topological space and let Xd be the set X endowed
with the discrete topology (that is, any subset is open). The identity
map i : Xd −→ X is continuous. For any F ∈ Mod(kX) the adjunction
(i−1, i∗) gives a morphism

(1.3) εF : F −→ i∗i
−1F.

For U ∈ Op(X) we have (i∗i
−1F )(U) ≃

∏
x∈U Fx. We deduce:

Lemma 1.22. For any F ∈ Mod(kX) the adjunction morphism (1.3)
is a monomorphism.

We remark that sheaves on Xd are easy to describe: Pk(X
d) ∼−→

Mod(kXd) ≃ (Mod(k))X
d
, that is, a sheaf F ∈ Mod(kXd) is a family of

k-modules Fx indexed by X. The exactness of a sequence is checked
pointwise. We deduce that, if Fx is injective in Mod(k) for all x ∈ X,
then F = {Fx}x∈X is injective in Mod(kXd). In particular Mod(kXd)
has enough injectives: for a given F = {Fx}x∈X we choose a monomor-
phism Fx −→ Ix, for all x ∈ X, where Ix is injective (which is possible
since Mod(k) has enough injectives). Then I = {Ix}x∈X is injective in
Mod(kXd) and F −→ I is a monomorphism.

Proposition 1.23. For any topological space X, Mod(kX) has enough
injectives.

Proof. Let F ∈ Mod(kX). We have remarked that Mod(kXd) has
enough injectives. Hence there exists a monomorphism i−1F −→ I in
Mod(kXd) with I injective. Since i∗ is left exact it induces a monomor-
phism i∗i

−1F −→ i∗I in Mod(kX). Composing with (1.3) and using
Lemma 1.22 we have a monomorphism F −→ i∗I. By Lemma 1.21 the
sheaf i∗I is injective and we obtain the result. □
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We remark that if k is a field, any sheaf in Mod(kXd) is injective
and the morphism (1.3) is already a monomorphism from F to an
injective object. In this situation the standard way of building an
injective resolution of a given F (that is, we start with I0 = i∗i

−1F
and apply the procedure to coker εF , defining I1 = i∗i

−1(coker εF ),
then to coker d1,. . . ) gives the so called Godement resolution of F .

1.6. Derived functors. By Proposition 1.23 all left exact functors
from Mod(kX) to an abelian category have a right derived functor (see
Definition 2.18 below). In particular we can consider RHom (the de-
rived functor of Hom from Mod(kX) to the category of Abelian groups),
RHom, Rf∗ and Rf!. For an open subset U ⊂ X we have the left ex-
act functors Γ(U ; ·) and Γc(U ; ·). Their derived functors are denoted
RΓ(U ; ·) and RΓc(U ; ·). We also use

H i(U ;F ) :=H iRΓ(U ;F ), H i
c(U ;F ) :=H iRΓc(U ;F ).

We can also prove that the tensor product has a left derived functor,

denoted
L

⊗.

An example: the cohomology of an interval. A sheaf F on X
is flabby if, for any open subset U ⊂ X, the restriction morphism
F (X) −→ F (U) is surjective. We can check that, when k is a field,
flabby is the same thing as injective. Let f : X −→ Y be a continuous
map. The family of flabby sheaves is f∗-injective, which implies that
we can compute Rf∗(F ) using a flabby resolution of F . We apply this
result to the computation of H i(R;k[a,b]) for a closed interval [a, b] of
R.

We recall the monomorphism (1.3) ϵ : k[a,b] −→ i∗i
−1k[a,b], where i

is the map from R with the discrete topology to R. We can iden-
tify i∗i

−1k[a,b] with the sheaf F[a,b] of functions on [a, b] defined by
F[a,b](U) = {f : U ∩ [a, b] −→ R}. This sheaf is flabby since we can
extend a function defined on U ∩ [a, b] arbitrarily to a function defined
on [a, b]. We define G = coker(ϵ) and we have the short exact sequence:

(1.4) 0 −→ k[a,b] −→ F[a,b] −→ G −→ 0.

Lemma 1.24. For any open subset U ⊂ R the sequence (1.4) gives the
exact sequence of sections:

(1.5) 0 −→ Γ(U ;k[a,b])
a(U)−−→ Γ(U ;F[a,b])

b(U)−−→ Γ(U ;G) −→ 0.

Proof. Long exercise. □

Lemma 1.25. The sheaf G of (1.4) is flabby.
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Proof. Let U ⊂ R and s ∈ G(U) be given. By Lemma 1.24 there
exists s′ ∈ F[a,b](U) such that b(U)(s′) = s. Since F[a,b] is flabby, there
exists t′ ∈ F[a,b](R) such that t′|U = s′. Then t = b(R)(t′) satisfies
t|U = s. □

Hence (1.4) gives a flabby resolution of k[a,b]. We deduce that for
any open subset U of R

H i(U ;k[a,b]) ≃ H i(0 −→ Γ(U ;F[a,b])
b(U)−−→ Γ(U ;G) −→ 0).

By Lemma 1.24 the morphism b(U) is surjective and we obtain that
the cohomology of k[a,b] is concentrated in degree 0:

Proposition 1.26. Let [a, b] be a closed interval in R. For any open
interval U of R such that U ∩ [a, b] ̸= ∅, we have

H0(U ;k[a,b]) ≃ k and H i(U ;k[a,b]) ≃ 0 for i ̸= 0.

We can prove in the same way that, if B is a closed ball in Rn,
then H∗(Rn;kB) is concentrated in degree 0, where it is k. We can
deduce that H∗(X;kX) is concentrated in degree 0, as soon as X is
contractible (see [3, §2.7]). Using the sequences of the next paragraph
it follows that the Eilenberg–Steenrod axioms are satisfied and we have
H∗(X;kX) ≃ H∗(X;k) for any CW complex X. Let us rewrite this as
follows.

Theorem 1.27. Let Z ⊂ X be a closed subset. If Z is a CW complex,
then H∗(X;kZ) is isomorphic to the singular cohomology H∗(Z;k) of
Z.

1.7. Relations between functors. Let us introduce some notations.

Definition 1.28. For a locally closed subset Z ⊂ X and F ∈ Mod(kX)
we set ΓZ(F ) = Hom(kZ , F ). For an open subset U ⊂ X we set
ΓZ(U ;F ) = Γ(U ; ΓZ(F )).

Lemma 1.29. Let Z be locally closed and U be open.
If Z is closed, we have Γ(U ; ΓZ(F )) ≃ {s ∈ F (U); supp(s) ⊂ Z∩U}.
If Z is open, we have Γ(U ; ΓZ(F )) ≃ F (U ∩ Z).

The functor ΓZ(·) is left exact and its derived functor is RΓZ(F ) =
RHom(kZ , F ). For an open subset U the functor ΓZ(U ; ·) is also left
exact and we have RΓZ(U ;F ) ≃ RΓ(U ; RΓZ(F )). We set

H i
Z(U ;F ) = H iRΓZ(U ;F ).

Let U ⊂ X be open and let F ∈ D(kX). We can deduce from
Lemma 1.15 the following long exact sequences (we use the notations
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of the Lemma):

. . . −→ H i(U ;FW\W ′) −→ H i(U ;FW ) −→ H i(U ;FW ′)

−→ H i+1(U ;FW\W ′) −→ . . . ,

. . . −→ H i
W ′(U ;F ) −→ H i

W (U ;F ) −→ H i
W\W ′(U ;F )

−→ H i+1
W ′ (U ;F ) −→ . . . .

We can also deduce from Lemma 1.16 the sequences

. . . −→ H i
Z1∩Z2

(U ;F ) −→ H i
Z1
(U ;F )⊕H i

Z2
(U ;F )

−→ H i
Z1∪Z2

(U ;F ) −→ H i+1
Z1∩Z2

(U ;F ) −→ . . . ,

. . . −→ H i(U1 ∪ U2;F ) −→ H i(U1;F )⊕H i(U2;F )

−→ H i(U1 ∩ U2;F ) −→ H i+1(U1 ∪ U2;F ) −→ . . . .

Using these sequences we can deduce from Theorem 1.27

Lemma 1.30. Let U ⊂ X be an open subset such that U is compact.
Then H∗(X;kU) ≃ H∗

c (U ;k).

We denote by ωX the dualizing complex on X. If X is a manifold,
ωX is actually the orientation sheaf shifted by the dimension, that is,
ωX ≃ orX [dX ]. The duality functors are defined by

(1.6) DX( • ) = RHom( • , ωX), D′
X( • ) = RHom( • ,kX).

An important result is the existence of a right adjoint for the derived
proper direct image Rf! (Poincaré-Verdier duality). It is defined under
fairly general hypothesis. At least, if f : X −→ Y is a map of manifolds,
there exists f ! : Db(kY ) −→ Db(kX) right adjoint to Rf!, which implies
in particular

Hom(Rf!F,G) ≃ Hom(F, f !G)

for all F ∈ Db(kX), G ∈ Db(kY ). When f is a locally closed embedding
we have

f !G ≃ f−1(RΓX(G)).

When f is a submersion, we have, setting ωX|Y = RHom(f−1(ωY ), ωX)

f !G ≃ f−1(G)⊗ ωX|Y .

In particular if f is a submersion with oriented fiber of dimension d,
f !G ≃ f−1(G)[d].

We recall some useful facts (see [3, §2, §3]).

Proposition 1.31. Let f : X −→ Y be a morphism of manifolds, F , G,
H ∈ D(kX), F

′, G′ ∈ D(kY ). Then we have

(a) RHom(kU , F ) ≃ RΓ(U ;F ), for U ⊂ X open,
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(b) RΓ(U ; RHom(F,G)) ≃ RHom(F |U , G|U), for U ⊂ X open,

(c) H iF is the sheaf associated with V 7→ H i(V ;F ),

(d) H iRHom(F,G) is the sheaf associated with V 7→ Hom(F |V , G|V [i]),

(e) RHom(F
L

⊗G,H) ≃ RHom(F,RHom(G,H)),

(f) Rf!(F
L

⊗ f−1F ′) ≃ (Rf!F )
L

⊗ F ′, (projection formula),

(g) f ! RHom(F ′, G′) ≃ RHom(f−1F ′, f !G′),

(h) Rf∗RHom(F,G) ≃ RHom(Rf!F,Rf∗G), if f is an embedding,

(i) for a Cartesian diagram
X Y

X ′ Y ′

f

g g′

f ′
we have the base change

formula f ′−1Rg′!(F
′) ≃ Rg!f

−1(F ′),

The adjunction between
L

⊗ and RHom together with kU ⊗ kU ≃ kU

give
Hom(kU ,D

′(kU)) ≃ Hom(kU ,kX) ≃ H0(U ;kX)

and the canonical section 1 ∈ H0(U ;kX) gives a morphism kU −→
D′(kU). Similarly we have a natural morphism kU −→ D′(kU). In the
following case they are isomorphisms.

Lemma 1.32. If the inclusion U ⊂ X is locally homeomorphic to the
inclusion ]−∞, 0[×Rn−1 ⊂ Rn (for example, if ∂U is smooth), then the
above morphisms kU −→ D′(kU) and kU −→ D′(kU) are isomorphisms:

(1.7) kU
∼−→ D′(kU), kU

∼−→ D′(kU).

Proof. Let us prove the first isomorphism. It is enough to check that
kU −→ D′(kU) induces an isomorphism k ∼−→ (D′(kU))x for each x ∈ X.
Since D′(kU) = RHom(kU ,kX), Proposition 1.31-(b-c) gives

H i(D′(kU))x ≃ lim−→
x∈V

Hom(kU |V ,kX |V [i]).

By (a) we have Hom(kU |V ,kX |V [i]) ≃ H i(U∩V ;kX). By Theorem 1.27
this is the cohomology of U ∩ V which can be chosen contractible in
our inductive limit. □

Example 1.33. We have RΓ{0}(kRn) ≃ k{0}[−n]. Indeed the sheaf
RΓ{0}kRn has support {0} and its stalk at 0 coincides with its global
sections. We have the excision exact sequence

H i
{0}(Rn;kRn) −→ H i(Rn;kRn) −→ H i

Rn\{0}(Rn;kRn).

By Proposition 1.31-(a) H i
Rn\{0}(Rn;kRn) ≃ H i(Rn \ {0};kRn) and this

is the cohomology of the sphere. The result follows.
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Example 1.34. The previous example generalizes as follows. LetX be
a manifold and Z a submanifold of codimension d. Then RΓZ(kX) ≃
orZ|X [−d] where orZ|X is the relative orientation sheaf.

Example 1.35. In R2 we define Z = {x ≥ 0; y ≥ 0} and U = {x < 0;
y < 0}. Then RHom(kZ ,kU) ≃ k[−2]. Indeed, by Lemma 1.32 we
have

RHom(kZ ,kU) ≃ RHom(kZ ,RHom(kU ,kR2))

≃ RHom(kZ ⊗ kU ,kR2)

≃ RHom(kZ∩U ,kR2)

≃ RHom(k{0},kR2)

and the result follows from Example 1.33.

Example 1.36. By the previous example Hom(kZ ,kU [2]) ≃ k. Let
u : kZ −→ kU [2] be the image of 1 ∈ k. Let F ∈ D(kR2) be given by

the dt F −→ kZ −→ kU [2]
+1−→. Then F is isomorphic to the complex

kR2
d−→ kZ1 ⊕kZ2 where kR2 is in degree 0, Z1 = {x ≥ 0}, Z2 = {y ≥ 0}

and d is the sum of the natural morphisms kR2 −→ kZi
induced by the

inclusions of closed subsets Zi ⊂ R2.

2. Derived categories

2.1. Categories of complexes.

Definition 2.1. Let C be an additive category. A complex (X ·, d·X) in
C is a sequence of composable morphisms in C

· · · −→ X i diX−→ X i+1 −→ · · ·

such that di+1 ◦ di = 0, for all i ∈ Z (we forget the subscripts when
there is no ambiguity). The sequence of morphisms diX is called the
differential.

A morphism f from a complex (X ·, d·X) to a complex (Y ·, d·Y ) is
a sequence of morphisms f i : X i −→ Y i, i ∈ Z, commuting with the
differentials.

We denote by C(C) the category of complexes in C. A complex is said
bounded from below (resp. above) if X i ≃ 0 for i ≪ 0 (resp. i ≫ 0).
It is bounded if it bounded from below and from above. We let C+(C),
C−(C), Cb(C) be the corresponding categories.
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Definition 2.2. Let C be an abelian category and let X = (X ·, d·X) ∈
C(C). For i ∈ Z we define

Zi(X) = ker diX , Bi(X) = im di−1
X ,

H i(X) = Zi(X)/Bi(X) = coker(Bi(X) −→ Zi(X))

and we call H i(X) the ith cohomology of X. In the case of the category
of groups Zi(X) (resp. Bi(X)) is called the ith group of cocycles (resp.
boundaries).

A morphism of complexes f : X −→ Y induces morphisms Zi(f),
Bi(f), H i(f) and Zi, Bi, H i are functors from C(C) to C. We say that
f is a quasi-isomorphism if the morphisms H i(f) : H i(X) −→ H i(Y ) are
isomorphisms, for all i ∈ Z.

If C is abelian, then C(C) is also abelian. Moreover for a mor-
phism f : X −→ Y in C(C) we have (ker f)i = ker(f i) and (coker f)i =
coker(f i).

Proposition 2.3. Let C be an abelian category and let 0 −→ X
f−→ Y

g−→
Z −→ 0 be a short exact sequence in C(C). Then there exists a canonical
long exact sequence in C

· · · −→ Hn(X)
Hn(f)−−−→ Hn(Y )

Hn(g)−−−→ Hn(Z)
δn−→ Hn+1(X)

Hn+1(f)−−−−−→ Hn+1(Y )
Hn+1(g)−−−−−→ Hn+1(Z) −→ · · · .

Definition 2.4. Let C be an abelian category and let I ∈ Ob(C). We
say that I is injective if the functor Hom(·, I) is exact, that is, if for
any short exact sequence 0 −→ A −→ B, the sequence Hom(A, I) −→
Hom(B, I) −→ 0 is exact. We say that C has enough injectives if for any
M ∈ Ob(C), there exist an injective object I and an exact sequence
0 −→ M −→ I.

Proposition 2.5. Let C be an abelian category. We assume that C
has enough projectives. Then any X ∈ C+(C) has an injective (right)
resolution, that is, a morphism u : X −→ I in C+(C) such that u is a
quasi-isomorphism and Ik is injective for each k ∈ Z.

This proposition holds in C(C) but the right notion of injective reso-
lution is more complicated. The next proposition says that a projective
resolution is unique up to homotopy in the following sense.

Definition 2.6. Let C be an additive category and let P = (P ·, d·P ),
Q = (Q·, d·Q) ∈ C(C). We say that two morphisms f, g : P −→ Q in C(C)
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are homotopic if there exists a family of morphisms si : P i −→ Qi−1,
i ∈ Z, such that

fn − gn = dn−1
Q ◦ sn + sn+1 ◦ dnP ,

for all n ∈ Z.
The homotopy relation is compatible with the additive structure of

Hom(P,Q) and with the composition in C(C). It follows that we can
define a category of complexes up to homotopy as follows.

Definition 2.7. Let C be an additive category. We define a category
K(C) by Ob(K(C)) = Ob(C(C)) and

HomK(C)(P,Q) = HomC(C)(P,Q)/ ∼h,

where ∼h is the homotopy relation on HomC(C)(P,Q). We have an
obvious functor K(C) −→ C(C) which is the identity on objects and the
quotient map on the morphisms.

The category K(C) is additive. It is no longer abelian but it has a
triangulated structure.

Proposition 2.8. Let C be an abelian category, let X, Y ∈ C+(C) and
let v : Y −→ J be an injective resolution in C+(C). Let f : X −→ Y be
a morphism and u : X −→ I a quasi-isomorphism. Then there exists a
morphism f ′ : I −→ J such that v ◦ f = f ′ ◦ u. Moreover, if f ′′ : I −→ J
is another such morphism, then f ′ and f ′′ are homotopic. In particular
two injective resolutions of X are canonically isomorphic in K(C).
2.2. Definition of derived categories. Here we only give a brief
account on the subject and refer to the first chapter of [3] or to [?] for
details and proofs.

Definition 2.9. Let C be an abelian category and let u : X −→ Y be a
morphism in C(C) or in K(C). We say that u is a quasi-isomorphism (qis
for short) if the morphisms H i(u) : H i(X) −→ H i(Y ) are isomorphisms,
for all i ∈ Z.

The derived category of C, denoted D(C), is obtained from C(C) by
inverting the qis. This process is called localization.

Definition 2.10. Let A be a category and S a family of morphisms
in A. A localization of A by S is a category AS (a priori in a bigger
universe) and a functor Q : A −→ AS such that

(i) for all s ∈ S, Q(s) is an isomorphism,
(ii) for any category B and any functor F : A −→ B such that F (s)

is an isomorphism for all s ∈ S, there exists a (unique) functor
FS : AS −→ B such that F ≃ FS ◦Q,
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It is possible to construct AS as a category with the same objects as
A and with morphisms defined as chains (s1, u1, s2, u2, . . . , sn, un) with
si ∈ S and ui any morphism in A modulo some equivalence relation.
Such a chain is meant to represent un ◦ s−1

n ◦ un−1 ◦ · · · ◦ s−1
1 . However

we will only consider a special case where the localization is obtained
by a calculus of fractions.

Definition 2.11. A family S of morphisms in A is a left multiplicative
system if

(i) any isomorphism belongs to S,
(ii) if f, g ∈ S and g ◦ f is defined, then g ◦ f ∈ S,
(iii) for given morphisms f, s, s ∈ S, as in the following diagram,

there exist g, t, t ∈ S, making the diagram commutative

X
g //

t
��

Y

s
��

X ′ f // Y ′,

(iv) for two given morphisms f, g : X −→ Y in A, if there exists
s ∈ S such that s ◦ f = s ◦ g, then there exists t ∈ S such that
f ◦ t = g ◦ t:

W
t

99K X
f,g−−→ Y

s−→ Z.

Proposition 2.12. Let A be a category and S a left multiplicative
system. Then AS can be described as follows. The set of objects is
Ob(AS) = Ob(A). For X, Y ∈ Ob(A), we have HomAS (X, Y ) =
{(W, s, u); s : W −→ X is in S and u : W −→ Y is in A}/ ∼, where the
equivalence relation ∼ is given by (W, s, u) ∼ (W ′, s′, u′) if there exists
(W ′′, s′′, u′′), s′′ ∈ S, such that we have a commutative diagram

W
s

}}

u

!!
X W ′′s′′oo u′′

//

OO

��

Y.

W ′

s′
aa

u′
==

The composition “u′s′−1us−1” is visualized by the diagram

Y ′

t
~~

v
!!

s◦t

vv

u′◦v

((
X Ws
oo

u
// Y W ′

s′
oo

u′
// Z.
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where t, v, t ∈ S, are given by (iii) in Definition 2.11.

Let us go back to our abelian category C.

Proposition 2.13. Let Qis be the family of qis in K(C). Then Qis is
a left (and right) multiplicative system.

Definition 2.14. Let C be an abelian category. The derived category
of C is the localization D(C) = (K(C))Qis. We denote by QC : K(C) −→
D(C) the localization functor (or its composition with C(C) −→ K(C)).
Starting with K∗(C) where ∗ = +,− or b, we define in the same way
D∗(C).

The categories K(C) and D(C) are additive. They are not abelian in
general.

By definition the cohomology functors H i : K(C) −→ C, i ∈ Z, factor-
ize through the localization functor. We still denote by H i : D(C) −→ C
the induced functors.

Lemma 2.15. Let C, C ′ be abelian categories. Let F : C −→ C ′ be
an exact functor. Then C(F ) sends qis to qis. In particular QC′ ◦
K(F ) : K(C) −→ D(C ′) sends qis to isomorphisms and factorizes in a
unique way through a functor D(C) −→ D(C ′) that we still denote by F :

K(C)
K(F )

//

QC
��

K(C ′)

QC′
��

D(C) F // D(C ′).

Remark 2.16. We have a natural embedding of C in C(C) which sends
X ∈ C to the complex (X ·, d·X) with X0 = X and X i = 0 for i ̸= 0.
This induces by composition other functors C −→ K(C) and C −→ D(C).
We can check that all these functors are fully faithful embeddings of C
in C(C), K(C) or D(C).

Proposition 2.8 translate as follows.

Proposition 2.17. Let C be an abelian category. We assume that C
has enough injectives and we let I be its full subcategory of injective
objects. We denote by Q|I : K+(I) −→ D+(C) the functor induced by the
quotient functor. Then Q|I is an equivalence of categories.

Definition 2.18 (Derived functor). Let C, C ′ be abelian categories. We
assume that C has enough injectives. Let F : C −→ C ′ (or F : C+(C) −→
C+(C ′)) be a left exact functor. Let K(F ) : K+(I) −→ K+(C ′) be the
functor induced by F . We define RF : D+(C) −→ D+(C ′) by RF =
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QC′ ◦ K(F ) ◦ res, where res is an inverse to the equivalence Q|I of
Proposition 2.17.

If F is exact then RF ≃ F (with the notation of Lemma 2.15). For
a left exact functor F : C −→ C ′ and X ∈ C we have H0RF (X) ≃ F (X)
(using the embedding of Remark 2.16).

Truncation functors. Let C be an abelian category. For a given
n ∈ Z we define τ≤n, τ≥n : C(C) −→ C(C) by

τ≤n(X) = · · · −→ Xn−2 −→ Xn−1 −→ ker(dnX) −→ 0 −→ · · ·
τ≥n(X) = · · · −→ 0 −→ coker(dn−1

X ) −→ Xn+1 −→ Xn+2 −→ · · · .
We have natural morphisms in C(C), for n ≤ m,

τ≤n(X) −→ X, X −→ τ≥n(X),

τ≤n(X) −→ τ≤m(X), τ≥n(X) −→ τ≥m(X).

We have H i(τ≤n(X)) ≃ H i(X) for i ≤ n and H i(τ≤n(X)) ≃ 0 for i > 0.
We have a similar result for τ≥n(X) and the above morphisms induce
the tautological morphisms on the cohomology (that is, the identity
morphism of H i if both groups are non-zero, or the zero morphism).

In particular the functors τ≤n, τ≥n send qis to qis and they induce
functors, denoted in the same way, on D(C), together with the same
morphisms of functors. We see from the definition, for any X ∈ D(C)
and any i ∈ Z:
(2.1) τ≤iτ≥i(X) ≃ τ≥iτ≤i(X) ≃ H i(X)[−i].

Lemma 2.19. Let C be an abelian category and let X ∈ D(C) be an
objet concentrated in one degree i0, that is, H

i(X) ≃ 0 if i ̸= i0. Then
X ≃ H i0(X)[−i0].

Proof. By the hypothesis and by the description of the cohomology
of τ≤n(X), τ≥n(X), the morphisms τ≤i0(X) −→ X and τ≤i0(X) −→
τ≥i0(τ≤i0(X)) are isomorphisms in D(C). Hence X ≃ τ≥i0(τ≤i0(X))
and we conclude with (2.1). □

2.3. Triangulated structure. We recall that a triangulated category
T is an additive category endowed with an auto-equivalence X 7→ X[1]

and a family of distinguish triangles (dt) X
f−→ Y

g−→ Z
h−→ X[1] such

that

(TR1) every morphism can be extended to distinguished triangle, the
collection of distinguished triangles is stable under isomorphism

and, for any X ∈ T the triangle X
id−→ X

0−→ 0
0−→ X[1] is

distinguished,
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(TR2) X
f−→ Y

g−→ Z
h−→ X[1] is a dt if and only if Y

g−→ Z
h−→ X[1]

−f [1]−−−→
Y [1] is a dt,

(TR3) for two dt X
f−→ Y

g−→ Z
h−→ X[1] and X ′ f ′

−→ Y ′ g′−→ Z ′ h′
−→ X ′[1],

any commutative square f ′◦u = v◦f (with u : X −→ X ′, v : Y −→
Y ′) can be extended to a morphism of triangles (that is, there
exists w : Z −→ Z ′ making two other commutative squares),

(TR4) octahedral axiom (it is the distinguished triangle version of
the isomorphism (C/A)/(B/A) ≃ C/B for two inclusions of
k-modules A ↪→ B ↪→ C).

If C is an abelian category, then D(C) is triangulated. If 0 −→ X
f−→

Y
g−→ Z −→ 0 is a short exact sequence in C(C), then there exists a

morphism Z
h−→ X[1] in D(C) such that X

f−→ Y
g−→ Z

h−→ X[1] is a dt.

If X
f−→ Y

g−→ Z
h−→ X[1] is a dt in D(C), then we have a long exact

sequence in C:

· · · −→ Hn(X)
Hn(f)−−−→ Hn(Y )

Hn(g)−−−→ Hn(Z)
Hn(h)−−−→ Hn+1(X)

Hn+1(f)−−−−−→ Hn+1(Y )
Hn+1(g)−−−−−→ Hn+1(Z) −→ · · · .

The derived functor RF of Definition 2.18 is triangulated (i.e. it
sends a dt to a dt).

References

[1] M. Kashiwara and P. Schapira, Micro-support des faisceaux: applications aux
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